論文の概要: Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems
- arxiv url: http://arxiv.org/abs/2404.14963v4
- Date: Tue, 15 Oct 2024 08:11:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:59:41.237181
- Title: Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems
- Title(参考訳): GSM8K で >97% を達成する: 問題を深く理解することで LLM が数学語問題により良い解をもたらす
- Authors: Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, Bo Du,
- Abstract要約: CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
- 参考スコア(独自算出の注目度): 50.76385564061713
- License:
- Abstract: Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks. However, CoT still falls short in dealing with complex math word problems, as it usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors. Prior studies involve addressing the calculation errors and step-missing errors, but neglect the semantic misunderstanding errors, which is the major factor limiting the reasoning performance of LLMs. To this end, we propose a simple-yet-effective method, namely Deeply Understanding the Problems (DUP), to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors. The core of our method is to encourage the LLMs to deeply understand the problems and extract the key problem-solving information used for better reasoning. Extensive experiments on 10 diverse reasoning benchmarks show that our DUP method consistently outperforms the other counterparts by a large margin. More encouragingly, DUP achieves a new SOTA result on the GSM8K benchmark, with an accuracy of 97.1% under the zero-shot setting.
- Abstract(参考訳): CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
しかし、CoTは、意味的誤解エラー、計算エラー、ステップミスエラーという3つの落とし穴に悩まされるため、複雑な数学用語の問題を扱うには依然として不足している。
従来の研究では、計算エラーとステップミスのエラーに対処するが、意味的誤解の誤りは無視する。
そこで本研究では,LLMの数学的問題解決能力を改善するために,意味的誤りに対処するシンプルな解法であるDeeply Understanding the Problems (DUP)を提案する。
提案手法の核心は, LLMが問題を深く理解し, より良い推論に使用する重要な問題解決情報を抽出することを奨励することである。
10種類の多変量推論ベンチマークによる大規模な実験により、我々のDUP法は、他の手法よりもずっと優れています。
さらに奨励的に、DUPはGSM8Kベンチマークで新しいSOTA結果を達成し、ゼロショット設定で精度は97.1%である。
関連論文リスト
- Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
小学校数学におけるLLMの解答能力の深さについて検討する。
既存の数式語問題に対して,それらの性能を併用して評価する。
論文 参考訳(メタデータ) (2024-10-02T17:01:10Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems [17.80128896525717]
後向きの推論は 比較的未調査です
後方推論は 前方推論の「逆」と見なすことができます
性能改善のための3つの異なる前方推論戦略のバリエーションを提案する。
論文 参考訳(メタデータ) (2023-10-03T12:03:06Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。