論文の概要: Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems
- arxiv url: http://arxiv.org/abs/2310.01991v2
- Date: Mon, 8 Jul 2024 03:33:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 03:28:33.884837
- Title: Fill in the Blank: Exploring and Enhancing LLM Capabilities for Backward Reasoning in Math Word Problems
- Title(参考訳): 単語問題における逆推論のためのLLM能力の探索と向上
- Authors: Aniruddha Deb, Neeva Oza, Sarthak Singla, Dinesh Khandelwal, Dinesh Garg, Parag Singla,
- Abstract要約: 後向きの推論は 比較的未調査です
後方推論は 前方推論の「逆」と見なすことができます
性能改善のための3つの異なる前方推論戦略のバリエーションを提案する。
- 参考スコア(独自算出の注目度): 17.80128896525717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While forward reasoning (i.e., find the answer given the question) has been explored extensively in recent literature, backward reasoning is relatively unexplored. We examine the backward reasoning capabilities of LLMs on Math Word Problems (MWPs): given a mathematical question and its answer, with some details omitted from the question, can LLMs effectively retrieve the missing information? On modifying three benchmark datasets for this task, to evaluate this task: GSM8k, SVAMP, and MultiArith, we find a significant drop in the accuracy of models on this task compared to forward reasoning across SOTA LLMs (GPT4, GPT3.5, PaLM-2, and LLaMa). Motivated by the fact backward reasoning can be seen as the ''inverse'' of forward reasoning, we propose variations of three different forward reasoning strategies to improve performance. Rephrase reformulates the given problem into a forward reasoning problem, PAL-Tools combines the idea of Program-Aided LLMs to produce a set of equations that can be solved by an external solver, and Check your Work exploits the availability of natural verifier of high accuracy in the forward direction, interleaving solving and verification steps. Finally, realizing that each of our base methods correctly solves a different set of problems, we propose a novel Bayesian formulation for creating an ensemble over the base methods to further boost the accuracy. Extensive experimentation demonstrates successive improvement in the performance of LLMs on the backward reasoning task, using our strategies, with our ensemble-based method resulting in significant performance gains compared to the SOTA forward reasoning strategies we adapt.
- Abstract(参考訳): 先進的推論(すなわち、質問に対する答えを見つける)は近年の文献で広く研究されているが、後進的推論は比較的未解明である。
数学的な質問とその答えが与えられた場合、その質問からいくつかの詳細を省略して、LLMが欠落した情報を効果的に取り出すことができるか?
GSM8k、SVAMP、MultiArithの3つのベンチマークデータセットを修正してこのタスクを評価すると、SOTA LLM(GPT4、GPT3.5、PaLM-2、LLaMA)間の前方推論と比較して、このタスクのモデルの精度が大幅に低下することがわかった。
本稿では,前向き推論の「逆」とみなすことができる事実に触発され,性能向上のための3つの異なる前向き推論戦略のバリエーションを提案する。
PAL-ToolsはProgram-Aided LLMのアイデアを組み合わせて、外部の問題解決者によって解ける方程式のセットを生成します。
最後に, 基本手法のそれぞれが異なる問題の集合を正しく解き, 精度を高めるために, 基本手法上のアンサンブルを生成する新しいベイズ式を提案する。
広汎な実験により,我々の戦略を用いて,後方推論タスクにおけるLCMの性能を連続的に向上させることができた。
関連論文リスト
- Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter? [36.14795256060537]
複雑度が異なる274のグリッドベースパズルからなる評価データセットであるGridPuzzleを開発した。
第2に, GPT-4, Claude-3, Gemini, Mistral, Llama-2 など LLM の推論鎖を手動で解析した新しい誤り分類法を提案する。
第3に、大規模主観的評価のためのLLMベースのフレームワーク(すなわち、誤りを特定する)と客観的な指標であるPuzzleEvalを開発し、推論連鎖の正しさを評価する。
論文 参考訳(メタデータ) (2024-07-20T07:43:07Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [86.03285157412839]
CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
論文 参考訳(メタデータ) (2024-04-23T12:16:05Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - Zero-Shot Question Answering over Financial Documents using Large
Language Models [0.18749305679160366]
我々は,財務報告に対するマルチホップ数値推論を必要とする複雑な問題に答えるために,大規模言語モデル(LLM)に基づくアプローチを導入する。
LLMを誘導する新しいゼロショットプロンプトを使用して、必要な推論をPythonプログラムやドメイン固有言語にエンコードします。
論文 参考訳(メタデータ) (2023-11-19T16:23:34Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
大規模言語モデルの複雑な推論能力を高めるために,textbftextitThought Propagation (TP)を提案する。
TP はまず LLM に対して,入力問題に関連する類似問題の集合を提案し,解決するよう促す。
TPは、類似問題の結果を再利用して、新しいソリューションを直接生成したり、スクラッチから得られた初期ソリューションを修正するための知識集約的な実行プランを導出する。
論文 参考訳(メタデータ) (2023-10-06T01:40:09Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。