論文の概要: X-3D: Explicit 3D Structure Modeling for Point Cloud Recognition
- arxiv url: http://arxiv.org/abs/2404.15010v1
- Date: Tue, 23 Apr 2024 13:15:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 14:01:50.099456
- Title: X-3D: Explicit 3D Structure Modeling for Point Cloud Recognition
- Title(参考訳): X-3D:ポイントクラウド認識のための明示的な3次元構造モデリング
- Authors: Shuofeng Sun, Yongming Rao, Jiwen Lu, Haibin Yan,
- Abstract要約: X-3Dは明示的な3D構造モデリング手法である。
入力された3D空間内の明示的な局所構造情報をキャプチャする。
現在の局所領域内のすべての近傍点に対して共有重みを持つ動的カーネルを生成する。
- 参考スコア(独自算出の注目度): 73.0588783479853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous prior studies predominantly emphasize constructing relation vectors for individual neighborhood points and generating dynamic kernels for each vector and embedding these into high-dimensional spaces to capture implicit local structures. However, we contend that such implicit high-dimensional structure modeling approch inadequately represents the local geometric structure of point clouds due to the absence of explicit structural information. Hence, we introduce X-3D, an explicit 3D structure modeling approach. X-3D functions by capturing the explicit local structural information within the input 3D space and employing it to produce dynamic kernels with shared weights for all neighborhood points within the current local region. This modeling approach introduces effective geometric prior and significantly diminishes the disparity between the local structure of the embedding space and the original input point cloud, thereby improving the extraction of local features. Experiments show that our method can be used on a variety of methods and achieves state-of-the-art performance on segmentation, classification, detection tasks with lower extra computational cost, such as \textbf{90.7\%} on ScanObjectNN for classification, \textbf{79.2\%} on S3DIS 6 fold and \textbf{74.3\%} on S3DIS Area 5 for segmentation, \textbf{76.3\%} on ScanNetV2 for segmentation and \textbf{64.5\%} mAP , \textbf{46.9\%} mAP on SUN RGB-D and \textbf{69.0\%} mAP , \textbf{51.1\%} mAP on ScanNetV2 . Our code is available at \href{https://github.com/sunshuofeng/X-3D}{https://github.com/sunshuofeng/X-3D}.
- Abstract(参考訳): 多くの先行研究は、個々の近傍点に対する関係ベクトルの構築と各ベクトルに対する動的カーネルの生成に重点を置いており、それらを高次元空間に埋め込んで暗黙の局所構造を捉えている。
しかし、このような暗黙的な高次元構造モデリングは、明示的な構造情報がないため、点雲の局所的な幾何学的構造を不十分に表現している。
そこで我々は,X-3Dを明示的な3次元構造モデリング手法として導入する。
X-3D は入力された3D空間内の明示的な局所構造情報を捕捉し、現在の局所領域内のすべての近傍ポイントに対して共有重みを持つ動的カーネルを生成することで機能する。
このモデリング手法は、効果的な幾何学的先行性を導入し、埋め込み空間の局所構造と元の入力点雲との相違を著しく低減し、局所的特徴の抽出を改善する。
S3DIS 6 fold上の \textbf{79.2\%}, S3DIS Area 5 の \textbf{74.3\%}, ScanNetV2 の ScanNetV2 の \textbf{76.3\%}, SUN RGB-D の \textbf{46.9\%} mAP, SUN RGB-D の \textbf{69.0.0\%} mAP, \textbf{69.0\%} mAP, \textbf{69.3\%} mAP の \textbf{76.3\%}, S3NetV2 の \textbf{76.3\%}, SUN RGB-D の \textbf{69.0.0\%} mAP, \textbf{51.1\%} mAP
我々のコードは \href{https://github.com/sunshuofeng/X-3D}{https://github.com/sunshuofeng/X-3D} で入手できる。
関連論文リスト
- Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
本稿では,CAGroup3Dという新しい2段階完全スパース3Dオブジェクト検出フレームワークを提案する。
提案手法は,まず,オブジェクト表面のボクセル上でのクラス認識型局所群戦略を活用することによって,高品質な3D提案を生成する。
不正なボクセルワイドセグメンテーションにより欠落したボクセルの特徴を回復するために,完全にスパースな畳み込み型RoIプールモジュールを構築した。
論文 参考訳(メタデータ) (2022-10-09T13:38:48Z) - OctField: Hierarchical Implicit Functions for 3D Modeling [18.488778913029805]
我々は3次元曲面の学習可能な階層的暗黙表現であるOctoFieldを提案し、メモリと計算予算の少ない複雑な曲面の高精度符号化を可能にする。
この目的を達成するために、曲面占有率と部分幾何学の豊かさに応じて3次元空間を適応的に分割する階層的オクツリー構造を導入する。
論文 参考訳(メタデータ) (2021-11-01T16:29:39Z) - Two Heads are Better than One: Geometric-Latent Attention for Point
Cloud Classification and Segmentation [10.2254921311882]
本稿では,幾何学的特徴と潜在的特徴を組み合わせて3次元シーンを意味のある部分集合に分割する,革新的な2頭部アテンション層を提案する。
各ヘッドは、幾何学的特徴または潜在的特徴のいずれかを用いて、局所的およびグローバルな情報を組み合わせて、この情報を使用して、より良い局所的関係を学習する。
論文 参考訳(メタデータ) (2021-10-30T11:20:56Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - ODFNet: Using orientation distribution functions to characterize 3D
point clouds [0.0]
点まわりの点配向分布を利用して、点群の表現力のある局所近傍表現を得ます。
新しい ODFNet モデルは ModelNet40 と ScanObjectNN データセットのオブジェクト分類における最先端の精度を実現する。
論文 参考訳(メタデータ) (2020-12-08T19:54:20Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
生の3D点から直接3次元特徴の検出と記述を共同で学習するシームズネットワークを提案する。
3次元キーポイントを検出するために,局所的な記述子の識別性を教師なしで予測する。
各種ベンチマーク実験により,本手法はグローバルポイントクラウド検索とローカルポイントクラウド登録の両面で競合する結果が得られた。
論文 参考訳(メタデータ) (2020-07-17T20:21:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。