論文の概要: Conformal Predictive Systems Under Covariate Shift
- arxiv url: http://arxiv.org/abs/2404.15018v2
- Date: Mon, 16 Sep 2024 10:32:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 02:25:37.006403
- Title: Conformal Predictive Systems Under Covariate Shift
- Title(参考訳): 共変量シフト下における等角予測系
- Authors: Jef Jonkers, Glenn Van Wallendael, Luc Duchateau, Sofie Van Hoecke,
- Abstract要約: Conformal Predictive Systems (CPS) は予測分布を構築するための汎用的なフレームワークを提供する。
重み付きCPS(重み付きコンフォーマル予測)を提案する。
本稿ではWCPSの有効性と有効性に関する理論的根拠と予想について述べる。
- 参考スコア(独自算出の注目度): 2.9310590399782788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal Predictive Systems (CPS) offer a versatile framework for constructing predictive distributions, allowing for calibrated inference and informative decision-making. However, their applicability has been limited to scenarios adhering to the Independent and Identically Distributed (IID) model assumption. This paper extends CPS to accommodate scenarios characterized by covariate shifts. We therefore propose Weighted CPS (WCPS), akin to Weighted Conformal Prediction (WCP), leveraging likelihood ratios between training and testing covariate distributions. This extension enables the construction of nonparametric predictive distributions capable of handling covariate shifts. We present theoretical underpinnings and conjectures regarding the validity and efficacy of WCPS and demonstrate its utility through empirical evaluations on both synthetic and real-world datasets. Our simulation experiments indicate that WCPS are probabilistically calibrated under covariate shift.
- Abstract(参考訳): Conformal Predictive Systems (CPS) は、予測分布を構築するための汎用的なフレームワークを提供する。
しかしながら、それらの適用性は、独立分散IID(Independent and Identically Distributed)モデルの仮定に固執するシナリオに限られている。
本稿では,共変量シフトを特徴とするシナリオに対応するため,CPSを拡張した。
そこで我々は,重み付きCPS(Weighted CPS, Weighted Conformal Prediction, WCP)を提案する。
この拡張により、共変量シフトを扱うことができる非パラメトリック予測分布の構築が可能になる。
本稿では,WCPSの有効性と有効性に関する理論的根拠と予想について述べる。
シミュレーション実験により,WCPSは共変量シフトの下で確率的に校正されていることが示された。
関連論文リスト
- Ensemble Prediction via Covariate-dependent Stacking [0.0]
本研究は,CDST (Co-dependent stacking') という,アンサンブル予測の新しい手法を提案する。
従来の積み重ね方式とは異なり、CDSTはモデルウェイトを共変量の関数として柔軟に変化させ、複雑なシナリオにおける予測性能を向上させる。
以上の結果から,CDSTは時間的・時間的予測の問題に特に有用であり,様々なデータ分析分野の研究者や実践者にとって強力なツールとなることが示唆された。
論文 参考訳(メタデータ) (2024-08-19T07:31:31Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Informativeness of Weighted Conformal Prediction [3.1717575440579617]
本稿では,重み付き共形予測の有意性を高める2つの方法を提案する。
提案手法の理論的保証を確立し,シミュレーションによる有効性を示す。
論文 参考訳(メタデータ) (2024-05-10T13:55:08Z) - COLEP: Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic Circuits [21.140271657387903]
任意のブラックボックス機械学習モデルに対して,統計的に厳密な予測セットを構築する際に,等角予測の性能が向上した。
本稿では,確率回路を用いた確率論的に堅牢な学習共形予測フレームワーク(COLEP)を提案する。
CIFAR-10で9%,AwA2で14%, GTSRBで12%, CIFAR-10で9%, AwA2で14%, COLEPは12%向上した。
論文 参考訳(メタデータ) (2024-03-17T21:23:45Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - Learning Counterfactually Invariant Predictors [11.682403472580162]
我々はCIP(Counterfactual Invariant Prediction)と呼ばれるモデルに依存しないフレームワークを提案する。
実験の結果,CIPが様々なシミュレーションおよび実世界のデータセットに反実的不変性を付与する効果が示された。
論文 参考訳(メタデータ) (2022-07-20T09:23:35Z) - Probabilistic Conformal Prediction Using Conditional Random Samples [73.26753677005331]
PCPは、不連続な予測セットによって対象変数を推定する予測推論アルゴリズムである。
効率的で、明示的または暗黙的な条件生成モデルと互換性がある。
論文 参考訳(メタデータ) (2022-06-14T03:58:03Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
指数関数型家族主成分分析(EPCA)の混合拡張は、従来のEPCAよりもデータ分布に関する構造情報を符号化するように設計された。
従来のEPCAの混合は、モデルの冗長性、すなわち混合成分間の重なりが問題であり、データクラスタリングの曖昧さを引き起こす可能性がある。
本稿では, 混合成分間での反発性増感前処理を導入し, ベイズ式に分散EPCA混合(DEPCAM)モデルを開発した。
論文 参考訳(メタデータ) (2020-04-07T04:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。