論文の概要: Ensemble Prediction via Covariate-dependent Stacking
- arxiv url: http://arxiv.org/abs/2408.09755v2
- Date: Tue, 27 Aug 2024 14:28:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 18:28:54.298093
- Title: Ensemble Prediction via Covariate-dependent Stacking
- Title(参考訳): Covariate-dependent Stackingによるアンサンブル予測
- Authors: Tomoya Wakayama, Shonosuke Sugasawa,
- Abstract要約: 本研究は,CDST (Co-dependent stacking') という,アンサンブル予測の新しい手法を提案する。
従来の積み重ね方式とは異なり、CDSTはモデルウェイトを共変量の関数として柔軟に変化させ、複雑なシナリオにおける予測性能を向上させる。
以上の結果から,CDSTは時間的・時間的予測の問題に特に有用であり,様々なデータ分析分野の研究者や実践者にとって強力なツールとなることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a novel approach to ensemble prediction, called ``covariate-dependent stacking'' (CDST). Unlike traditional stacking methods, CDST allows model weights to vary flexibly as a function of covariates, thereby enhancing predictive performance in complex scenarios. We formulate the covariate-dependent weights through combinations of basis functions, estimate them by optimizing cross-validation, and develop an expectation-maximization algorithm, ensuring computational efficiency. To analyze the theoretical properties, we establish an oracle inequality regarding the expected loss to be minimized for estimating model weights. Through comprehensive simulation studies and an application to large-scale land price prediction, we demonstrate that the CDST consistently outperforms conventional model averaging methods, particularly on datasets where some models fail to capture the underlying complexity. Our findings suggest that the CDST is especially valuable for, but not limited to, spatio-temporal prediction problems, offering a powerful tool for researchers and practitioners in various data analysis fields.
- Abstract(参考訳): 本研究では,'covariate-dependent stacking' (CDST)と呼ばれる,アンサンブル予測の新しい手法を提案する。
従来の積み重ね方式とは異なり、CDSTはモデルウェイトを共変量の関数として柔軟に変化させ、複雑なシナリオにおける予測性能を向上させる。
基本関数の組み合わせによって共変量に依存した重みを定式化し、クロスバリデーションを最適化してそれらを推定し、予測最大化アルゴリズムを開発し、計算効率の確保を図る。
理論的性質を解析するために,モデル重み推定のために最小化すべき損失に関するオラクルの不等式を確立する。
包括的なシミュレーション研究と大規模土地価格予測への応用を通じて、CDSTは従来のモデル平均化手法、特にいくつかのモデルが基盤となる複雑さを捉えないデータセットにおいて、一貫して上回っていることを実証した。
以上の結果から,CDSTは時空間予測の問題に限らず,特に有用であり,様々なデータ分析分野の研究者や実践者にとって強力なツールである可能性が示唆された。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
本稿では,新しい教師なしアンサンブル学習モデル(SUEL)を提案する。
連続的な予測スコアを持つ予測器のセット間の依存関係を利用して、ラベル付きデータなしで予測器をランク付けし、それらをアンサンブルされたスコアに重み付けする。
提案手法の有効性は、シミュレーション研究とリスク遺伝子発見の現実的応用の両方を通じて厳密に評価されている。
論文 参考訳(メタデータ) (2024-08-14T20:14:42Z) - Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data [8.619243141968886]
条件付き平均モデルにおける回帰係数を推定するための推論フレームワークを提案する。
提案手法は,正規化推定器を適応度スコア(PS)と結果回帰(OR)モデルの両方に用い,拡張逆確率重み付き(AIPW)法を開発した。
我々の理論的な知見は、広範囲なシミュレーション研究と実世界のデータ応用を通して検証される。
論文 参考訳(メタデータ) (2024-06-20T00:34:54Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Development and Evaluation of Conformal Prediction Methods for QSAR [0.5161531917413706]
定量的構造活性相関モデル(QSAR)は、化合物の生物活性を予測するために一般的に用いられる手法である。
優れた予測性能を達成する機械学習(ML)アルゴリズムの多くは、予測の不確実性を推定するためのいくつかのアドオンメソッドを必要とする。
コンフォーマル予測(CP)は予測アルゴリズムに非依存であり、データ分布の弱い仮定の下で有効な予測間隔を生成できる。
論文 参考訳(メタデータ) (2023-04-03T13:41:09Z) - Causality and Generalizability: Identifiability and Learning Methods [0.0]
この論文は、因果効果の推定、因果構造学習、および分布的に堅牢な予測方法に関する研究領域に寄与する。
本稿では,データ依存平均二乗予測誤差正規化を用いた機器変数設定における線形・非線形因果関係推定器について述べる。
本稿では,介入誘起分布に関する分布ロバスト性に関する一般的な枠組みを提案する。
論文 参考訳(メタデータ) (2021-10-04T13:12:11Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
コンクリートの圧縮強度のモデルに基づく評価は, 強度予測と混合最適化の両方のために高い値である。
複数の回帰手法の重み付け組み合わせにより予測モデルの精度を向上させるためのさらなる一歩を踏み出す。
得られた多回帰モデルに基づいてGAに基づく混合最適化を提案する。
論文 参考訳(メタデータ) (2021-06-13T16:10:32Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。