Multi-Task Learning as enabler for General-Purpose AI-native RAN
- URL: http://arxiv.org/abs/2404.15197v1
- Date: Fri, 5 Apr 2024 21:12:25 GMT
- Title: Multi-Task Learning as enabler for General-Purpose AI-native RAN
- Authors: Hasan Farooq, Julien Forgeat, Shruti Bothe, Kristijonas Cyras, Md Moin,
- Abstract summary: This study explores the effectiveness of multi-task learning (MTL) approaches in facilitating a general-purpose AI native Radio Access Network (RAN)
The investigation focuses on four RAN tasks: (i) secondary carrier prediction, (ii) user location prediction, (iii) indoor link classification, and (iv) line-of-sight link classification.
We validate the performance using realistic simulations considering multi-faceted design aspects of MTL including model architecture, loss and gradient balancing strategies, distributed learning topology, data sparsity and task groupings.
- Score: 1.4295558450631414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The realization of data-driven AI-native architecture envisioned for 6G and beyond networks can eventually lead to multiple machine learning (ML) workloads distributed at the network edges driving downstream tasks like secondary carrier prediction, positioning, channel prediction etc. The independent life-cycle management of these edge-distributed independent multiple workloads sharing a resource-constrained compute node e.g., base station (BS) is a challenge that will scale with denser deployments. This study explores the effectiveness of multi-task learning (MTL) approaches in facilitating a general-purpose AI native Radio Access Network (RAN). The investigation focuses on four RAN tasks: (i) secondary carrier prediction, (ii) user location prediction, (iii) indoor link classification, and (iv) line-of-sight link classification. We validate the performance using realistic simulations considering multi-faceted design aspects of MTL including model architecture, loss and gradient balancing strategies, distributed learning topology, data sparsity and task groupings. The quantification and insights from simulations reveal that for the four RAN tasks considered (i) adoption of customized gate control-based expert architecture with uncertainty-based weighting makes MTL perform either best among all or at par with single task learning (STL) (ii) LoS classification task in MTL setting helps other tasks but its own performance is degraded (iii) for sparse training data, training a single global MTL model is helpful but MTL performance is on par with STL (iv) optimal set of group pairing exists for each task and (v) partial federation is much better than full model federation in MTL setting.
Related papers
- CoBa: Convergence Balancer for Multitask Finetuning of Large Language Models [23.50705152648991]
Multi-task learning (MTL) benefits the fine-tuning of large language models (LLMs)
Existing MTL strategies for LLMs often fall short by either being computationally intensive or failing to ensure simultaneous task convergence.
This paper presents CoBa, a new MTL approach designed to effectively manage task convergence balance with minimal computational overhead.
arXiv Detail & Related papers (2024-10-09T10:20:32Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes.
This work introduces Layer-d Multi-Task models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario.
arXiv Detail & Related papers (2024-06-05T08:23:38Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
We propose a novel multi-task learning (MTL) architecture designed to mitigate task interference while optimizing inference computational efficiency.
We employ a learnable gating mechanism to automatically balance the shared and task-specific representations while preserving the performance of all tasks.
arXiv Detail & Related papers (2024-02-26T18:59:52Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Mitigating Task Interference in Multi-Task Learning via Explicit Task
Routing with Non-Learnable Primitives [19.90788777476128]
Multi-task learning (MTL) seeks to learn a single model to accomplish multiple tasks by leveraging shared information among the tasks.
Existing MTL models have been known to suffer from negative interference among tasks.
We propose ETR-NLP to mitigate task interference through a synergistic combination of non-learnable primitives and explicit task routing.
arXiv Detail & Related papers (2023-08-03T22:34:16Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
Large-scale machine learning models are bringing advances to a broad range of fields.
Many of these models are too large to be trained on a single machine, and must be distributed across multiple devices.
We show that maximum parallelisation is sub-optimal in relation to user-critical metrics such as throughput and blocking rate.
arXiv Detail & Related papers (2023-01-31T17:41:07Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z) - When to Use Multi-Task Learning vs Intermediate Fine-Tuning for
Pre-Trained Encoder Transfer Learning [15.39115079099451]
Transfer learning (TL) in natural language processing has seen a surge of interest in recent years.
Three main strategies have emerged for making use of multiple supervised datasets during fine-tuning.
We compare all three TL methods in a comprehensive analysis on the GLUE dataset suite.
arXiv Detail & Related papers (2022-05-17T06:48:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.