CORE-BEHRT: A Carefully Optimized and Rigorously Evaluated BEHRT
- URL: http://arxiv.org/abs/2404.15201v4
- Date: Fri, 11 Oct 2024 05:26:01 GMT
- Title: CORE-BEHRT: A Carefully Optimized and Rigorously Evaluated BEHRT
- Authors: Mikkel Odgaard, Kiril Vadimovic Klein, Sanne Møller Thysen, Espen Jimenez-Solem, Martin Sillesen, Mads Nielsen,
- Abstract summary: BERT-based models have surged in popularity following the release of BEHRT and Med-BERT.
We study BERT-based EHR modeling and isolate the sources of improvement for key design choices.
- Score: 1.825224193230824
- License:
- Abstract: The widespread adoption of Electronic Health Records (EHR) has significantly increased the amount of available healthcare data. This has allowed models inspired by Natural Language Processing (NLP) and Computer Vision, which scale exceptionally well, to be used in EHR research. Particularly, BERT-based models have surged in popularity following the release of BEHRT and Med-BERT. Subsequent models have largely built on these foundations despite the fundamental design choices of these pioneering models remaining underexplored. Through incremental optimization, we study BERT-based EHR modeling and isolate the sources of improvement for key design choices, giving us insights into the effect of data representation, individual technical components, and training procedure. Evaluating this across a set of generic tasks (death, pain treatment, and general infection), we showed that improving data representation can increase the average downstream performance from 0.785 to 0.797 AUROC ($p<10^{-7}$), primarily when including medication and timestamps. Improving the architecture and training protocol on top of this increased average downstream performance to 0.801 AUROC ($p<10^{-7}$). We then demonstrated the consistency of our optimization through a rigorous evaluation across 25 diverse clinical prediction tasks. We observed significant performance increases in 17 out of 25 tasks and improvements in 24 tasks, highlighting the generalizability of our results. Our findings provide a strong foundation for future work and aim to increase the trustworthiness of BERT-based EHR models.
Related papers
- Enhanced Electronic Health Records Text Summarization Using Large Language Models [0.0]
This project builds on prior work by creating a system that generates clinician-preferred, focused summaries.
The proposed system leverages the Flan-T5 model to generate tailored EHR summaries based on clinician-specified topics.
arXiv Detail & Related papers (2024-10-12T19:36:41Z) - BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring [13.35453284825286]
This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model.
The model, BENDR, undergoes a two-phase training process, pre-training and fine-tuning.
The optimized model demonstrates substantial performance enhancements, achieving as low as 0.23 FP/h, 2.5$times$ lower than the baseline model, with a lower but still acceptable sensitivity rate.
arXiv Detail & Related papers (2024-06-27T14:09:10Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Improving Personalisation in Valence and Arousal Prediction using Data Augmentation [2.447631206868802]
This paper presents our work on an enhanced personalisation strategy, that leverages data augmentation to develop tailored models.
Our proposed approach, Distance Weighting Augmentation (DWA), employs a weighting-based augmentation method that expands a target individual's dataset.
Experimental results on the MuSe-Personalisation 2023 Challenge dataset demonstrate that our method significantly improves the performance of features sets.
arXiv Detail & Related papers (2024-04-13T16:57:37Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
Previous research has shown that jointly using clinical notes with electronic health record data improved predictive performance for patient monitoring.
We first confirm that performance significantly improves over state-of-the-art EHR data models when combining EHR data and clinical notes.
We then provide an analysis showing improvements arise almost exclusively from a subset of notes containing broader context on patient state rather than clinician notes.
arXiv Detail & Related papers (2022-12-06T15:18:57Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.