BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring
- URL: http://arxiv.org/abs/2406.19189v1
- Date: Thu, 27 Jun 2024 14:09:10 GMT
- Title: BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring
- Authors: Luca Benfenati, Thorir Mar Ingolfsson, Andrea Cossettini, Daniele Jahier Pagliari, Alessio Burrello, Luca Benini,
- Abstract summary: This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model.
The model, BENDR, undergoes a two-phase training process, pre-training and fine-tuning.
The optimized model demonstrates substantial performance enhancements, achieving as low as 0.23 FP/h, 2.5$times$ lower than the baseline model, with a lower but still acceptable sensitivity rate.
- Score: 13.35453284825286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a novel approach for EEG-based seizure detection leveraging a BERT-based model. The model, BENDR, undergoes a two-phase training process. Initially, it is pre-trained on the extensive Temple University Hospital EEG Corpus (TUEG), a 1.5 TB dataset comprising over 10,000 subjects, to extract common EEG data patterns. Subsequently, the model is fine-tuned on the CHB-MIT Scalp EEG Database, consisting of 664 EEG recordings from 24 pediatric patients, of which 198 contain seizure events. Key contributions include optimizing fine-tuning on the CHB-MIT dataset, where the impact of model architecture, pre-processing, and post-processing techniques are thoroughly examined to enhance sensitivity and reduce false positives per hour (FP/h). We also explored custom training strategies to ascertain the most effective setup. The model undergoes a novel second pre-training phase before subject-specific fine-tuning, enhancing its generalization capabilities. The optimized model demonstrates substantial performance enhancements, achieving as low as 0.23 FP/h, 2.5$\times$ lower than the baseline model, with a lower but still acceptable sensitivity rate, showcasing the effectiveness of applying a BERT-based approach on EEG-based seizure detection.
Related papers
- Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Early Warning Prediction with Automatic Labeling in Epilepsy Patients [4.6700203020828885]
We propose a meta learning framework to improve the prediction of early ictal signals.
The proposed bi-level optimization framework can help automatically label noisy data at the early ictal stage.
arXiv Detail & Related papers (2023-10-09T18:12:46Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Segmentation by Test-Time Optimization (TTO) for CBCT-based Adaptive
Radiation Therapy [2.5705729402510338]
Traditional or deep learning (DL) based deformable image registration (DIR) can achieve improved results in many situations.
We propose a method called test-time optimization (TTO) to refine a pre-trained DL-based DIR population model.
Our proposed method is less susceptible to the generalizability problem, and thus can improve overall performance of different DL-based DIR models.
arXiv Detail & Related papers (2022-02-08T16:34:22Z) - Neonatal seizure detection from raw multi-channel EEG using a fully
convolutional architecture [1.8352113484137622]
This architecture is designed to detect seizure events from raw electroencephalogram (EEG) signals as opposed to the state-of-the-art hand engineered feature-based representation employed in traditional machine learning based solutions.
The proposed architecture opens new avenues for the application of deep learning to neonatal EEG, where the performance becomes a function of the amount of training data with less dependency on the availability of precise clinical labels.
arXiv Detail & Related papers (2021-05-28T14:08:36Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Med-BERT: pre-trained contextualized embeddings on large-scale
structured electronic health records for disease prediction [12.669003066030697]
We propose Med-BERT, which adapts the BERT framework for pre-training contextualized embedding models on structured diagnosis data from 28,490,650 patients EHR dataset.
Med-BERT substantially improves prediction accuracy, boosting the area under receiver operating characteristics curve (AUC) by 2.02-7.12%.
In particular, pre-trained Med-BERT substantially improves the performance of tasks with very small fine-tuning training sets (300-500 samples) boosting the AUC by more than 20% or equivalent to the AUC of 10 times larger training set.
arXiv Detail & Related papers (2020-05-22T05:07:17Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.