論文の概要: Automatic Classification of Subjective Time Perception Using Multi-modal Physiological Data of Air Traffic Controllers
- arxiv url: http://arxiv.org/abs/2404.15213v3
- Date: Mon, 30 Sep 2024 15:41:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:58:34.826351
- Title: Automatic Classification of Subjective Time Perception Using Multi-modal Physiological Data of Air Traffic Controllers
- Title(参考訳): エアトラヒック制御器のマルチモーダル生理学的データを用いた主観的時間知覚の自動分類
- Authors: Till Aust, Eirini Balta, Argiro Vatakis, Heiko Hamann,
- Abstract要約: 我々は、人間の主観的時間知覚を調節する装置を開発することを目指している。
本研究では,航空管制官の主観的時間知覚を自動的に評価する手法を提案する。
- 参考スコア(独自算出の注目度): 3.7423614135604093
- License:
- Abstract: In high-pressure environments where human individuals must simultaneously monitor multiple entities, communicate effectively, and maintain intense focus, the perception of time becomes a critical factor influencing performance and well-being. One indicator of well-being can be the person's subjective time perception. In our project $ChronoPilot$, we aim to develop a device that modulates human subjective time perception. In this study, we present a method to automatically assess the subjective time perception of air traffic controllers, a group often faced with demanding conditions, using their physiological data and eleven state-of-the-art machine learning classifiers. The physiological data consist of photoplethysmogram, electrodermal activity, and temperature data. We find that the support vector classifier works best with an accuracy of 79 % and electrodermal activity provides the most descriptive biomarker. These findings are an important step towards closing the feedback loop of our $ChronoPilot$-device to automatically modulate the user's subjective time perception. This technological advancement may promise improvements in task management, stress reduction, and overall productivity in high-stakes professions.
- Abstract(参考訳): 人間の個人が複数の実体を同時に監視し、効果的にコミュニケーションし、集中を維持しなければならない高圧環境では、時間の知覚がパフォーマンスと幸福に影響を与える重要な要因となる。
幸福感の指標の1つは、その人の主観的時間知覚である。
プロジェクト$ChronoPilot$では、人間の主観的時間知覚を調節するデバイスの開発を目指しています。
本研究では,その生理的データと11種類の最先端機械学習分類器を用いて,航空交通管制官の主観的時間知覚を自動的に評価する手法を提案する。
生理データは、光胸腺図、電球活動、温度データから成っている。
支持ベクトル分類器は,99%の精度で有効であり,電磁気活性は最も説明的なバイオマーカーを提供する。
これらの発見は、ユーザの主観的時間知覚を自動的に調節するために、$ChronoPilot$-deviceのフィードバックループを閉じるための重要なステップです。
この技術進歩は、高度な専門職におけるタスクマネジメント、ストレス低減、全体的な生産性の向上を約束する。
関連論文リスト
- Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting [2.36325543943271]
本研究では,影響状況予測のためのマルチモーダル深層学習モデルを提案する。
このモデルは、トランスフォーマーエンコーダと事前訓練された言語モデルを組み合わせることで、客観的なメトリクスと自己報告された日記の統合分析を容易にする。
その結果, 予測精度82.50%, 負の影響82.76%, 前週の予測精度82.76%が得られた。
論文 参考訳(メタデータ) (2024-03-16T17:24:38Z) - Jointly Modeling Spatio-Temporal Features of Tactile Signals for Action Classification [50.63919418371698]
ウェアラブルエレクトロニクスによって収集される触覚信号は、人間の行動のモデリングと理解に不可欠である。
既存の動作分類法では、触覚信号の空間的特徴と時間的特徴を同時に捉えることができない。
S-Temporal Aware Aware Transformer (STAT) を提案する。
論文 参考訳(メタデータ) (2024-01-21T03:47:57Z) - PhysFormer++: Facial Video-based Physiological Measurement with SlowFast
Temporal Difference Transformer [76.40106756572644]
最近のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙な手がかりのマイニングに重点を置いている。
本稿では,PhysFormerとPhys++++をベースとした2つのエンドツーエンドビデオ変換器を提案する。
4つのベンチマークデータセットで総合的な実験を行い、時間内テストとクロスデータセットテストの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-07T15:56:03Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Automated Mobility Context Detection with Inertial Signals [7.71058263701836]
本研究の主な目的は,日常の運動機能の遠隔監視のためのコンテキスト検出について検討することである。
本研究の目的は、ウェアラブル加速度計でサンプリングされた慣性信号が、歩行関連活動を屋内または屋外に分類するための信頼性の高い情報を提供するかを理解することである。
論文 参考訳(メタデータ) (2022-05-16T09:34:43Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
自律レースでは、天気は突然変化し、認識が著しく低下し、非効率な操作が引き起こされる。
悪天候の検知を改善するために、ディープラーニングベースのモデルは通常、そのような状況下でキャプチャされた広範なデータセットを必要とする。
本稿では,5つの最先端検出器のうち4つの性能向上を図るために,自動レース(CycleGANを用いた)における合成悪条件データセットを用いた手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T10:02:40Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙なrの手がかりのマイニングに重点を置いている。
本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (2021-11-23T18:57:11Z) - Self-supervised transfer learning of physiological representations from
free-living wearable data [12.863826659440026]
意味ラベルのない活動・心拍(HR)信号を用いた新しい自己教師型表現学習法を提案する。
我々は、我々のモデルを、最大の自由生活複合センシングデータセット(手首加速度計とウェアラブル心電図データによる280k時間)で評価する。
論文 参考訳(メタデータ) (2020-11-18T23:21:34Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
意味ラベルのない活動・心拍(HR)信号を用いた新しい自己教師型表現学習法を提案する。
その結果, 線形分類器を用いた伝達学習により, 様々な下流タスクにおいて, 埋め込みが一般化できることが示唆された。
本研究は,大規模健康・ライフスタイルモニタリングに寄与する行動・生理的データに対する,最初のマルチモーダル自己管理手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T17:56:03Z) - Spatio-temporal encoding improves neuromorphic tactile texture
classification [10.738853905952409]
接触事象を、遅いメカノレプターの動作を模倣する離散スパイク事象として符号化する多チャンネルニューロモルフィックシステムを実装した。
その結果,個々の触覚メカノレセプター応答のみを用いた場合と比較して,テクスチャ分類が大幅に改善した。
論文 参考訳(メタデータ) (2020-10-27T10:37:02Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。