Automatic Classification of Subjective Time Perception Using Multi-modal Physiological Data of Air Traffic Controllers
- URL: http://arxiv.org/abs/2404.15213v3
- Date: Mon, 30 Sep 2024 15:41:30 GMT
- Title: Automatic Classification of Subjective Time Perception Using Multi-modal Physiological Data of Air Traffic Controllers
- Authors: Till Aust, Eirini Balta, Argiro Vatakis, Heiko Hamann,
- Abstract summary: We aim to develop a device that modulates human subjective time perception.
In this study, we present a method to automatically assess the subjective time perception of air traffic controllers.
- Score: 3.7423614135604093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In high-pressure environments where human individuals must simultaneously monitor multiple entities, communicate effectively, and maintain intense focus, the perception of time becomes a critical factor influencing performance and well-being. One indicator of well-being can be the person's subjective time perception. In our project $ChronoPilot$, we aim to develop a device that modulates human subjective time perception. In this study, we present a method to automatically assess the subjective time perception of air traffic controllers, a group often faced with demanding conditions, using their physiological data and eleven state-of-the-art machine learning classifiers. The physiological data consist of photoplethysmogram, electrodermal activity, and temperature data. We find that the support vector classifier works best with an accuracy of 79 % and electrodermal activity provides the most descriptive biomarker. These findings are an important step towards closing the feedback loop of our $ChronoPilot$-device to automatically modulate the user's subjective time perception. This technological advancement may promise improvements in task management, stress reduction, and overall productivity in high-stakes professions.
Related papers
- Classifying Subjective Time Perception in a Multi-robot Control Scenario Using Eye-tracking Information [3.8916312075738273]
Accurately assessing an operator's mental state is critical for maintaining performance and well-being.
We use subjective time perception as a sensitive, low-latency indicator of well-being and cognitive strain.
We study how human physiological signals can be used to estimate a person's subjective time perception in a human-swarm interaction scenario.
arXiv Detail & Related papers (2025-04-08T21:30:18Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - PhysFormer++: Facial Video-based Physiological Measurement with SlowFast
Temporal Difference Transformer [76.40106756572644]
Recent deep learning approaches focus on mining subtle clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose two end-to-end video transformer based on PhysFormer and Phys++++, to adaptively aggregate both local and global features for r representation enhancement.
Comprehensive experiments are performed on four benchmark datasets to show our superior performance on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2023-02-07T15:56:03Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance.
We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR.
arXiv Detail & Related papers (2023-01-19T12:33:50Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Automated Mobility Context Detection with Inertial Signals [7.71058263701836]
The primary goal of this paper is the investigation of context detection for remote monitoring of daily motor functions.
We aim to understand whether inertial signals sampled with wearable accelerometers, provide reliable information to classify gait-related activities as either indoor or outdoor.
arXiv Detail & Related papers (2022-05-16T09:34:43Z) - Objective Prediction of Tomorrow's Affect Using Multi-Modal
Physiological Data and Personal Chronicles: A Study of Monitoring College
Student Well-being in 2020 [0.0]
The goal of our study was to investigate the capacity to more accurately predict affect through a fully automatic and objective approach using multiple commercial devices.
Longitudinal physiological data and daily assessments of emotions were collected from a sample of college students using smart wearables and phones for over a year.
Results showed that our model was able to predict next-day affect with accuracy comparable to state of the art methods.
arXiv Detail & Related papers (2022-01-26T23:06:20Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
Recent deep learning approaches focus on mining subtle r clues using convolutional neural networks with limited-temporal receptive fields.
In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture.
arXiv Detail & Related papers (2021-11-23T18:57:11Z) - Self-Supervised Transformers for Activity Classification using Ambient
Sensors [3.1829446824051195]
This paper proposes a methodology to classify the activities of a resident within an ambient sensor based environment.
We also propose a methodology to pre-train Transformers in a self-supervised manner, as a hybrid autoencoder-classifier model.
arXiv Detail & Related papers (2020-11-22T20:46:25Z) - Self-supervised transfer learning of physiological representations from
free-living wearable data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We evaluate our model in the largest free-living combined-sensing dataset (comprising >280k hours of wrist accelerometer & wearable ECG data)
arXiv Detail & Related papers (2020-11-18T23:21:34Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.