Towards Large-Scale Training of Pathology Foundation Models
- URL: http://arxiv.org/abs/2404.15217v1
- Date: Sun, 24 Mar 2024 21:34:36 GMT
- Title: Towards Large-Scale Training of Pathology Foundation Models
- Authors: kaiko. ai, Nanne Aben, Edwin D. de Jong, Ioannis Gatopoulos, Nicolas Känzig, Mikhail Karasikov, Axel Lagré, Roman Moser, Joost van Doorn, Fei Tang,
- Abstract summary: We release and make publicly available the first batch of our pathology FMs trained on open-access TCGA whole slide images.
The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks.
We present an open-source framework designed for the consistent evaluation of pathology FMs across various downstream tasks.
- Score: 1.5861468117231254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven by the recent advances in deep learning methods and, in particular, by the development of modern self-supervised learning algorithms, increased interest and efforts have been devoted to build foundation models (FMs) for medical images. In this work, we present our scalable training pipeline for large pathology imaging data, and a comprehensive analysis of various hyperparameter choices and training techniques for building pathology FMs. We release and make publicly available the first batch of our pathology FMs (https://github.com/kaiko-ai/towards_large_pathology_fms) trained on open-access TCGA whole slide images, a commonly used collection of pathology images. The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks, ranging from breast cancer subtyping to colorectal nuclear segmentation. Finally, to unify the evaluation approaches used in the field and to simplify future comparisons of different FMs, we present an open-source framework (https://github.com/kaiko-ai/eva) designed for the consistent evaluation of pathology FMs across various downstream tasks.
Related papers
- MedDiff-FM: A Diffusion-based Foundation Model for Versatile Medical Image Applications [10.321593505248341]
This paper introduces a diffusion-based foundation model to address a diverse range of medical image tasks, namely MedDiff-FM.
MedDiff-FM leverages 3D CT images from multiple publicly available datasets, covering anatomical regions from head to abdomen, to pre-train a diffusion foundation model.
Experimental results demonstrate the effectiveness of MedDiff-FM in addressing diverse downstream medical image tasks.
arXiv Detail & Related papers (2024-10-20T16:03:55Z) - Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation? [10.20366295974822]
We introduce a novel decode head architecture, HQHSAM, which simply integrates elements from two state-of-the-art decoder heads, HSAM and HQSAM, to enhance segmentation performance.
Our experiments on multiple datasets, encompassing various anatomies and modalities, reveal that FMs, particularly with the HQHSAM decode head, improve domain generalization for medical image segmentation.
arXiv Detail & Related papers (2024-09-12T11:41:35Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - PathoWAve: A Deep Learning-based Weight Averaging Method for Improving Domain Generalization in Histopathology Images [13.362177469092963]
We introduce Pathology Weight Averaging (PathoWAve) to tackle domain shift phenomenon in histopathology image analysis.
Our results on Camelyon17 WILDS dataset demonstrate PathoWAve's superiority over previous proposed methods.
arXiv Detail & Related papers (2024-06-21T23:25:44Z) - PathoDuet: Foundation Models for Pathological Slide Analysis of H&E and IHC Stains [5.422494000842841]
We present PathoDuet, a series of pretrained models on histopathology images, and a new self-supervised learning framework in histochemistry.
The framework is featured by a newly-introduced pretext token and later task raisers to explicitly utilize certain relations between images.
Two pretext tasks, cross-scale positioning and cross-stain transferring, are designed to pretrain the model on Hematoxylin and Eosin images.
arXiv Detail & Related papers (2023-12-15T15:45:52Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.