論文の概要: Estimation Network Design framework for efficient distributed optimization
- arxiv url: http://arxiv.org/abs/2404.15273v1
- Date: Tue, 23 Apr 2024 17:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 12:53:16.012749
- Title: Estimation Network Design framework for efficient distributed optimization
- Title(参考訳): 効率的な分散最適化のための推定ネットワーク設計フレームワーク
- Authors: Mattia Bianchi, Sergio Grammatico,
- Abstract要約: 本稿では,分散イテレーションの解析と設計のためのグラフ理論言語である推定ネットワーク設計(END)を紹介する。
ENDアルゴリズムは特定の問題インスタンスのスパーシ性を活用し、通信オーバーヘッドを低減し、冗長性を最小化するために調整することができる。
特に、ADMM、AugDGM、Push-Sum DGDなど、確立された多くのメソッドのスパーシティ対応バージョンについて検討する。
- 参考スコア(独自算出の注目度): 3.3148826359547514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed decision problems features a group of agents that can only communicate over a peer-to-peer network, without a central memory. In applications such as network control and data ranking, each agent is only affected by a small portion of the decision vector: this sparsity is typically ignored in distributed algorithms, while it could be leveraged to improve efficiency and scalability. To address this issue, our recent paper introduces Estimation Network Design (END), a graph theoretical language for the analysis and design of distributed iterations. END algorithms can be tuned to exploit the sparsity of specific problem instances, reducing communication overhead and minimizing redundancy, yet without requiring case-by-case convergence analysis. In this paper, we showcase the flexility of END in the context of distributed optimization. In particular, we study the sparsity-aware version of many established methods, including ADMM, AugDGM and Push-Sum DGD. Simulations on an estimation problem in sensor networks demonstrate that END algorithms can boost convergence speed and greatly reduce the communication and memory cost.
- Abstract(参考訳): 分散決定問題は、中央メモリなしでピアツーピアネットワーク上でのみ通信できるエージェントのグループを特徴とする。
ネットワーク制御やデータランキングのようなアプリケーションでは、各エージェントは決定ベクトルのごく一部しか影響を受けない。
この問題に対処するため,本稿では,分散イテレーションの解析と設計のためのグラフ理論言語である推定ネットワーク設計(END)を紹介した。
ENDアルゴリズムは、特定の問題インスタンスのスパーシ性を利用して、通信オーバーヘッドを減らし、冗長性を最小化するが、ケースバイケースの収束解析を必要としないように調整することができる。
本稿では,分散最適化におけるENDの柔軟性について述べる。
特に、ADMM、AugDGM、Push-Sum DGDなど、確立された多くのメソッドのスパーシティ対応バージョンについて検討する。
センサネットワークにおける推定問題に関するシミュレーションでは、ENDアルゴリズムが収束速度を向上し、通信とメモリコストを大幅に削減できることが示されている。
関連論文リスト
- Decentralized Optimization in Time-Varying Networks with Arbitrary Delays [22.40154714677385]
通信遅延によるネットワークの分散最適化問題を考察する。
そのようなネットワークの例としては、協調機械学習、センサーネットワーク、マルチエージェントシステムなどがある。
通信遅延を模倣するため、ネットワークに仮想非計算ノードを追加し、有向グラフを生成する。
論文 参考訳(メタデータ) (2024-05-29T20:51:38Z) - Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
通信ネットワークのノード間で分散的に格納された凸関数の総和を最小化するタスクについて検討する。
この問題を解決するのに必要な分散通信数と(サブ)漸進計算の下位境界が確立されている。
我々は,これらの下界に適合する最初の最適アルゴリズムを開発し,既存の最先端技術と比較して理論性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-05-28T10:28:45Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
分散エージェントのネットワークによって達成可能な性能を導出し,通信制約や回帰問題を解消し,適応的に解決する。
エージェントによって最適化に必要なパラメータをオンラインで学習できる最適化アロケーション戦略を考案する。
論文 参考訳(メタデータ) (2023-04-07T13:41:08Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
集中ノードを持たないエージェントネットワーク上での分散(強い凸)最適化問題について検討する。
$varepsilon$-solutionは$tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$通信ステップ数で達成される。
この速度は、関心のクラスに適用される分散ゴシップ-アルゴリズムの、初めて(ポリログ因子まで)より低い複雑性の通信境界と一致する。
論文 参考訳(メタデータ) (2021-10-24T04:03:00Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
インターネット・オブ・シング、ネットワークセンシング、自律システム、有限サム最適化のための分散アルゴリズムのためのフェデレーション学習。
非有限サム最適化のためのDecentralized STochastic Recursive MethodDESTRESSを開発した。
詳細な理論的および数値的な比較は、DESTRESSが事前の分散アルゴリズムにより改善されていることを示している。
論文 参考訳(メタデータ) (2021-10-04T03:17:41Z) - Decentralized Statistical Inference with Unrolled Graph Neural Networks [26.025935320024665]
分散最適化アルゴリズムをグラフニューラルネットワーク(GNN)にアンロールする学習ベースフレームワークを提案する。
エンドツーエンドトレーニングによるリカバリエラーを最小限にすることで、この学習ベースのフレームワークは、モデルのミスマッチ問題を解決する。
コンバージェンス解析により,学習したモデルパラメータがコンバージェンスを加速し,リカバリエラーを広範囲に低減できることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-04T07:52:34Z) - Distributed Learning and Democratic Embeddings: Polynomial-Time Source
Coding Schemes Can Achieve Minimax Lower Bounds for Distributed Gradient
Descent under Communication Constraints [46.17631511884969]
我々は、n次元ユークリッド空間においてベクトルを圧縮する問題を考える。
数値化器の被覆効率が次元独立であるか、あるいは非常に弱い対数依存であるという意味では、民主主義的および民主的に近いソースコーディングスキームが(ほぼ)最適であることを示す。
分散最適化アルゴリズムDGD-DEFを提案する。このアルゴリズムは,提案した符号化戦略を用いて,(ほぼ)定数要素内における最小収束率を実現する。
論文 参考訳(メタデータ) (2021-03-13T00:04:11Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
コミュニケーションのボトルネックは、大規模なディープラーニングにおいて重要な問題である。
非効率な分散問題に対する誤りフィードバックよりも優れた収束性を示す分散誤差フィードバック(DEF)アルゴリズムを提案する。
また、DEFよりも優れた境界を示すDEFの一般化を加速するDEFAを提案する。
論文 参考訳(メタデータ) (2020-04-11T03:50:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。