Sparse Bayesian Correntropy Learning for Robust Muscle Activity Reconstruction from Noisy Brain Recordings
- URL: http://arxiv.org/abs/2404.15309v1
- Date: Mon, 1 Apr 2024 08:16:15 GMT
- Title: Sparse Bayesian Correntropy Learning for Robust Muscle Activity Reconstruction from Noisy Brain Recordings
- Authors: Yuanhao Li, Badong Chen, Natsue Yoshimura, Yasuharu Koike, Okito Yamashita,
- Abstract summary: We propose a new robust implementation for sparse Bayesian learning, so that robustness and sparseness can be realized simultaneously.
Motivated by the great robustness of maximum correntropy criterion (MCC), we proposed an integration of MCC into the sparse Bayesian learning regime.
To fully evaluate the proposed method, a synthetic dataset and a real-world muscle activity reconstruction task with two different brain modalities were employed.
- Score: 16.788501453001395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse Bayesian learning has promoted many effective frameworks for brain activity decoding, especially for the reconstruction of muscle activity. However, existing sparse Bayesian learning mainly employs Gaussian distribution as error assumption in the reconstruction task, which is not necessarily the truth in the real-world application. On the other hand, brain recording is known to be highly noisy and contains many non-Gaussian noises, which could lead to significant performance degradation for sparse Bayesian learning method. The goal of this paper is to propose a new robust implementation for sparse Bayesian learning, so that robustness and sparseness can be realized simultaneously. Motivated by the great robustness of maximum correntropy criterion (MCC), we proposed an integration of MCC into the sparse Bayesian learning regime. To be specific, we derived the explicit error assumption inherent in the MCC and then leveraged it for the likelihood function. Meanwhile, we used the automatic relevance determination (ARD) technique for the sparse prior distribution. To fully evaluate the proposed method, a synthetic dataset and a real-world muscle activity reconstruction task with two different brain modalities were employed. Experimental results showed that our proposed sparse Bayesian correntropy learning framework improves significantly the robustness in a noisy regression task. The proposed method can realize higher correlation coefficient and lower root mean squared error in the real-world muscle activity reconstruction tasks. Sparse Bayesian correntropy learning provides a powerful tool for neural decoding which can promote the development of brain-computer interfaces.
Related papers
- The Iterative Optimal Brain Surgeon: Faster Sparse Recovery by Leveraging Second-Order Information [35.34142909458158]
We show that we can leverage curvature information in OBS-like fashion upon the projection step of classic iterative sparse recovery algorithms such as IHT.
We present extensions of this approach to the practical task of obtaining accurate sparses, and validate it experimentally at scale for Transformer-based models on vision and language tasks.
arXiv Detail & Related papers (2024-08-30T10:06:26Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Correntropy-Based Logistic Regression with Automatic Relevance
Determination for Robust Sparse Brain Activity Decoding [18.327196310636864]
We introduce the correntropy learning framework into the automatic relevance determination based sparse classification model.
We evaluate it on a synthetic dataset, an electroencephalogram (EEG) dataset, and a functional magnetic resonance imaging (fMRI) dataset.
arXiv Detail & Related papers (2022-07-20T06:49:23Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - A deep learning based surrogate model for stochastic simulators [0.0]
We propose a deep learning-based surrogate model for simulators.
We utilize conditional maximum mean discrepancy (CMMD) as the loss-function.
Results obtained indicate the excellent performance of the proposed approach.
arXiv Detail & Related papers (2021-10-24T11:38:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.