Can a Machine be Conscious? Towards Universal Criteria for Machine Consciousness
- URL: http://arxiv.org/abs/2404.15369v2
- Date: Tue, 30 Apr 2024 17:28:30 GMT
- Title: Can a Machine be Conscious? Towards Universal Criteria for Machine Consciousness
- Authors: Nur Aizaan Anwar, Cosmin Badea,
- Abstract summary: Many concerns have been voiced about the ramifications of creating an artificial conscious entity.
This is compounded by a marked lack of consensus around what constitutes consciousness.
We propose five criteria for determining whether a machine is conscious.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As artificially intelligent systems become more anthropomorphic and pervasive, and their potential impact on humanity more urgent, discussions about the possibility of machine consciousness have significantly intensified, and it is sometimes seen as 'the holy grail'. Many concerns have been voiced about the ramifications of creating an artificial conscious entity. This is compounded by a marked lack of consensus around what constitutes consciousness and by an absence of a universal set of criteria for determining consciousness. By going into depth on the foundations and characteristics of consciousness, we propose five criteria for determining whether a machine is conscious, which can also be applied more generally to any entity. This paper aims to serve as a primer and stepping stone for researchers of consciousness, be they in philosophy, computer science, medicine, or any other field, to further pursue this holy grail of philosophy, neuroscience and artificial intelligence.
Related papers
- Consciousness defined: requirements for biological and artificial general intelligence [0.0]
Critically, consciousness is the apparatus that provides the ability to make decisions, but it is not defined by the decision itself.
requirements for consciousness include: at least some capability for perception, a memory for the storage of such perceptual information.
We can objectively determine consciousness in any conceivable agent, such as non-human animals and artificially intelligent systems.
arXiv Detail & Related papers (2024-06-03T14:20:56Z) - Machine Consciousness as Pseudoscience: The Myth of Conscious Machines [2.3931689873603603]
We argue how machine consciousness literature lacks scientific rigour, being impossible to falsify the opposite hypothesis.
We also show how phenomenal consciousness is not computable, independently on the complexity of the algorithm or model.
Given all those arguments we end the work arguing why the idea of conscious machines is nowadays a myth of transhumanism and science fiction culture.
arXiv Detail & Related papers (2024-05-12T17:30:48Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
We analyse the question of developing artificial consciousness from an evolutionary perspective.
We take the evolution of the human brain and its relation with consciousness as a reference model.
We propose to clearly specify what is common and what differs in AI conscious processing from full human conscious experience.
arXiv Detail & Related papers (2024-04-18T12:59:44Z) - Artificial consciousness. Some logical and conceptual preliminaries [0.0]
We argue for the necessity of using dimensions and profiles of consciousness for a balanced discussion about their possible instantiation or realisation in artificial systems.
Our primary goal in this paper is to review the main theoretical questions that arise in the domain of artificial consciousness.
arXiv Detail & Related papers (2024-03-29T13:47:47Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Survey of Consciousness Theory from Computational Perspective [8.521492577054078]
This paper surveys several main branches of consciousness theories originating from different subjects.
It also discusses the existing evaluation metrics of consciousness and possibility for current computational models to be conscious.
arXiv Detail & Related papers (2023-09-18T18:23:58Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.