Consciousness defined: requirements for biological and artificial general intelligence
- URL: http://arxiv.org/abs/2406.01648v1
- Date: Mon, 3 Jun 2024 14:20:56 GMT
- Title: Consciousness defined: requirements for biological and artificial general intelligence
- Authors: Craig I. McKenzie,
- Abstract summary: Critically, consciousness is the apparatus that provides the ability to make decisions, but it is not defined by the decision itself.
requirements for consciousness include: at least some capability for perception, a memory for the storage of such perceptual information.
We can objectively determine consciousness in any conceivable agent, such as non-human animals and artificially intelligent systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Consciousness is notoriously hard to define with objective terms. An objective definition of consciousness is critically needed so that we might accurately understand how consciousness and resultant choice behaviour may arise in biological or artificial systems. Many theories have integrated neurobiological and psychological research to explain how consciousness might arise, but few, if any, outline what is fundamentally required to generate consciousness. To identify such requirements, I examine current theories of consciousness and corresponding scientific research to generate a new definition of consciousness from first principles. Critically, consciousness is the apparatus that provides the ability to make decisions, but it is not defined by the decision itself. As such, a definition of consciousness does not require choice behaviour or an explicit awareness of temporality despite both being well-characterised outcomes of conscious thought. Rather, requirements for consciousness include: at least some capability for perception, a memory for the storage of such perceptual information which in turn provides a framework for an imagination with which a sense of self can be capable of making decisions based on possible and desired futures. Thought experiments and observable neurological phenomena demonstrate that these components are fundamentally required of consciousness, whereby the loss of any one component removes the capability for conscious thought. Identifying these requirements provides a new definition for consciousness by which we can objectively determine consciousness in any conceivable agent, such as non-human animals and artificially intelligent systems.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Neuromorphic Correlates of Artificial Consciousness [1.4957306171002251]
The concept of neural correlates of consciousness (NCC) suggests that specific neural activities are linked to conscious experiences.
This paper explores the potential for artificial consciousness by merging neuromorphic design and architecture with brain simulations.
arXiv Detail & Related papers (2024-05-03T09:27:51Z) - Can a Machine be Conscious? Towards Universal Criteria for Machine Consciousness [0.0]
Many concerns have been voiced about the ramifications of creating an artificial conscious entity.
This is compounded by a marked lack of consensus around what constitutes consciousness.
We propose five criteria for determining whether a machine is conscious.
arXiv Detail & Related papers (2024-04-19T18:38:22Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
We analyse the question of developing artificial consciousness from an evolutionary perspective.
We take the evolution of the human brain and its relation with consciousness as a reference model.
We propose to clearly specify what is common and what differs in AI conscious processing from full human conscious experience.
arXiv Detail & Related papers (2024-04-18T12:59:44Z) - Artificial consciousness. Some logical and conceptual preliminaries [0.0]
We argue for the necessity of using dimensions and profiles of consciousness for a balanced discussion about their possible instantiation or realisation in artificial systems.
Our primary goal in this paper is to review the main theoretical questions that arise in the domain of artificial consciousness.
arXiv Detail & Related papers (2024-03-29T13:47:47Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Survey of Consciousness Theory from Computational Perspective [8.521492577054078]
This paper surveys several main branches of consciousness theories originating from different subjects.
It also discusses the existing evaluation metrics of consciousness and possibility for current computational models to be conscious.
arXiv Detail & Related papers (2023-09-18T18:23:58Z) - Sources of Richness and Ineffability for Phenomenally Conscious States [57.8137804587998]
We provide an information theoretic dynamical systems perspective on the richness and ineffability of consciousness.
In our framework, the richness of conscious experience corresponds to the amount of information in a conscious state.
While our model may not settle all questions relating to the explanatory gap, it makes progress toward a fully physicalist explanation.
arXiv Detail & Related papers (2023-02-13T14:41:04Z) - Memory-Augmented Theory of Mind Network [59.9781556714202]
Social reasoning requires the capacity of theory of mind (ToM) to contextualise and attribute mental states to others.
Recent machine learning approaches to ToM have demonstrated that we can train the observer to read the past and present behaviours of other agents.
We tackle the challenges by equipping the observer with novel neural memory mechanisms to encode, and hierarchical attention to selectively retrieve information about others.
This results in ToMMY, a theory of mind model that learns to reason while making little assumptions about the underlying mental processes.
arXiv Detail & Related papers (2023-01-17T14:48:58Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.