論文の概要: Feature Distribution Shift Mitigation with Contrastive Pretraining for Intrusion Detection
- arxiv url: http://arxiv.org/abs/2404.15382v1
- Date: Tue, 23 Apr 2024 10:15:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 15:32:54.042434
- Title: Feature Distribution Shift Mitigation with Contrastive Pretraining for Intrusion Detection
- Title(参考訳): 侵入検知のためのコントラスト前処理による特徴分布シフト緩和
- Authors: Weixing Wang, Haojin Yang, Christoph Meinel, Hasan Yagiz Özkan, Cristian Bermudez Serna, Carmen Mas-Machuca,
- Abstract要約: モデル事前学習により,特徴分布シフトに対するロバスト性は8%以上向上することを示した。
また,適切な数値埋め込み戦略により,事前学習モデルの性能が向上することを示す。
提案したSwapConモデルは、eXtreme Gradient Boosting(XGBoost)およびK-Nearest Neighbor(KNN)ベースのモデルよりも大きなマージンで優れている。
- 参考スコア(独自算出の注目度): 7.986219763892841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been a growing interest in using Machine Learning (ML), especially Deep Learning (DL) to solve Network Intrusion Detection (NID) problems. However, the feature distribution shift problem remains a difficulty, because the change in features' distributions over time negatively impacts the model's performance. As one promising solution, model pretraining has emerged as a novel training paradigm, which brings robustness against feature distribution shift and has proven to be successful in Computer Vision (CV) and Natural Language Processing (NLP). To verify whether this paradigm is beneficial for NID problem, we propose SwapCon, a ML model in the context of NID, which compresses shift-invariant feature information during the pretraining stage and refines during the finetuning stage. We exemplify the evidence of feature distribution shift using the Kyoto2006+ dataset. We demonstrate how pretraining a model with the proper size can increase robustness against feature distribution shifts by over 8%. Moreover, we show how an adequate numerical embedding strategy also enhances the performance of pretrained models. Further experiments show that the proposed SwapCon model also outperforms eXtreme Gradient Boosting (XGBoost) and K-Nearest Neighbor (KNN) based models by a large margin.
- Abstract(参考訳): 近年,機械学習(ML),特にディープラーニング(DL)を用いてネットワーク侵入検出(NID)問題を解決することへの関心が高まっている。
しかし、時間とともに特徴分布の変化がモデルの性能に悪影響を及ぼすため、特徴分布シフト問題は依然として困難である。
1つの有望な解決策として、モデル事前訓練は、特徴分布シフトに対する堅牢性をもたらす新しいトレーニングパラダイムとして現れ、コンピュータビジョン(CV)と自然言語処理(NLP)で成功している。
このパラダイムがNID問題に有用かどうかを検証するため,NIDの文脈におけるMLモデルであるSwapConを提案する。
京都2006+データセットを用いて特徴分布シフトの証拠を実証する。
適切なサイズでモデルを事前学習することで,特徴分布シフトに対するロバスト性が8%以上向上することを示す。
さらに,適切な数値埋め込み戦略により,事前学習モデルの性能が向上することを示す。
さらに,提案したSwapConモデルでは,eXtreme Gradient Boosting (XGBoost) とK-Nearest Neighbor (KNN) を大きなマージンで比較した。
関連論文リスト
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAEは,ポイントマスク自動エンコーダのグローバルな特徴表現を強化する,自己教師型学習フレームワークである。
PseudoNeg-MAE は ModelNet40 と ScanObjectNN のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-24T07:57:21Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
大規模言語モデル(LLM)は大きな成功を収めたが、敵の摂動に対する脆弱性は大きな懸念を引き起こしている。
本稿では,LLMのマルチタスク特性を活用して,まずノイズの入力を識別し,次にこれらの復号化バージョンに基づいて予測を行う。
LLMのロバスト性を高めるために個別のモデルを訓練する必要がある従来のコンピュータビジョンのスムース化技術とは異なり、本手法は効率と柔軟性を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-18T15:47:00Z) - Latent-based Diffusion Model for Long-tailed Recognition [10.410057703866899]
長い尾の不均衡分布は、実用的なコンピュータビジョンアプリケーションにおいて一般的な問題である。
そこで本稿では,Long-tailed Recognition (LDMLR) のための遅延型拡散モデル(Latent-based Diffusion Model for Long-tailed Recognition)を提案する。
モデルの精度は,提案手法を用いてCIFAR-LTおよびImageNet-LTデータセットの改善を示す。
論文 参考訳(メタデータ) (2024-04-06T06:15:07Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
連続的な学習設定の主な課題は、以前に学習したタスクを実行する方法を忘れずに、タスクのシーケンスを効率的に学習することである。
本研究では,モデルの予測力に悪影響を及ぼすことなく,冗長なパラメータを自動生成する,スパースモデル(EsaCL)の効率的な連続学習法を提案する。
論文 参考訳(メタデータ) (2024-01-11T04:59:44Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
本研究では,クラスプライヤやグループプライヤの分布の変化による変化に頑健なトレーニングモデルの問題点について検討する。
本稿では,事前学習モデルからの予測に対するスケーリング調整を行う,非常に軽量なポストホック手法を提案する。
論文 参考訳(メタデータ) (2023-09-16T00:54:57Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
特定のデータセットでひとつのタスクを実行するための強力な神経予測器をトレーニングするNLPのパラダイムが、さまざまなアプリケーションで最先端のパフォーマンスを実現している。
データ分布が定常である、すなわち、トレーニングとテストの時間の両方で、データは固定された分布からサンプリングされる、という仮定に基づいて構築される。
この方法でのトレーニングは、人間が絶えず変化する情報の流れの中で学習し、操作できる方法と矛盾する。
データ分散がモデル寿命の経過とともにシフトすることが期待される実世界のユースケースに不適応である。
論文 参考訳(メタデータ) (2021-09-03T14:29:20Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。