論文の概要: Uncertainty in latent representations of variational autoencoders optimized for visual tasks
- arxiv url: http://arxiv.org/abs/2404.15390v2
- Date: Thu, 23 Jan 2025 19:13:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:08.180612
- Title: Uncertainty in latent representations of variational autoencoders optimized for visual tasks
- Title(参考訳): 視覚タスクに最適化された変分オートエンコーダの潜時表現の不確かさ
- Authors: Josefina Catoni, Domonkos Martos, Ferenc Csikor, Enzo Ferrante, Diego H. Milone, Balázs Meszéna, Gergő Orbán, Rodrigo Echeveste,
- Abstract要約: 変分オートエンコーダ(VAE)の推論特性について検討する。
従来のコンピュータビジョンからインスピレーションを得て、VAEに誘導バイアスを導入する。
復元された推論能力は、推論ネットワークでモチーフを開発することによって提供される。
- 参考スコア(独自算出の注目度): 3.9504737666460037
- License:
- Abstract: Deep Generative Models (DGMs) can learn flexible latent variable representations of images while avoiding intractable computations, common in Bayesian inference. However, investigating the properties of inference in Variational Autoencoders (VAEs), a major class of DGMs, reveals severe problems in their uncertainty representations. Here we draw inspiration from classical computer vision to introduce an inductive bias into the VAE by incorporating a global explaining-away latent variable, which remedies defective inference in VAEs. Unlike standard VAEs, the Explaing-Away VAE (EA-VAE) provides uncertainty estimates that align with normative requirements across a wide spectrum of perceptual tasks, including image corruption, interpolation, and out-of-distribution detection. We find that restored inference capabilities are delivered by developing a motif in the inference network (the encoder) which is widespread in biological neural networks: divisive normalization. Our results establish EA-VAEs as reliable tools to perform inference under deep generative models with appropriate estimates of uncertainty.
- Abstract(参考訳): 深部生成モデル(DGM)は、ベイズ推論で一般的な難解な計算を避けながら、画像の柔軟な潜伏変数表現を学習することができる。
しかし、DGMの主要なクラスである変分オートエンコーダ(VAEs)における推論の特性を調べると、その不確実性表現に深刻な問題があることが分かる。
ここでは、従来のコンピュータビジョンからインスピレーションを得て、大域的な説明付き潜在変数を組み込むことにより、VAEに帰納バイアスを導入する。
標準的なVAEとは異なり、Explaing-Away VAE (EA-VAE) は画像の破損、補間、分布外検出など、幅広い知覚的タスクの規範的要件に沿った不確実性推定を提供する。
生物学的ニューラルネットワークで広く使われている推論ネットワーク(エンコーダ)のモチーフを開発することにより、復元された推論能力が納品されることがわかった。
その結果, EA-VAEは, 不確かさを適切に見積もって, 深部生成モデルの下で推論を行う信頼性の高いツールとして確立された。
関連論文リスト
- Visual Analysis of Prediction Uncertainty in Neural Networks for Deep Image Synthesis [3.09988520562118]
予測に関わる品質、信頼性、堅牢性、不確実性を理解することが不可欠である。
これらの量の徹底的な理解は、アプリケーション科学者が情報的な決定を下すのに役立つ実用的な洞察を生み出します。
このコントリビューションは,DNNの予測の不確実性と感度を,様々な手法を用いて効率的に推定できることを示す。
論文 参考訳(メタデータ) (2024-05-22T20:01:31Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - DiG-IN: Diffusion Guidance for Investigating Networks -- Uncovering Classifier Differences Neuron Visualisations and Visual Counterfactual Explanations [35.458709912618176]
ディープラーニングは、ImageNetのような複雑な画像分類タスク、予期せぬ障害モード、例えばスプリアス機能などに大きな進歩をもたらした。
安全クリティカルなタスクでは、その決定のブラックボックスの性質は問題であり、説明や少なくとも意思決定を行う方法が緊急に必要である。
本稿では,これらの問題に対して,ガイド画像生成のためのフレームワークを用いて分類器由来の目的を最適化した画像を生成する。
論文 参考訳(メタデータ) (2023-11-29T17:35:29Z) - Variational Voxel Pseudo Image Tracking [127.46919555100543]
不確実性推定は、ロボット工学や自律運転といった重要な問題にとって重要なタスクである。
本稿では,3次元物体追跡のためのVoxel Pseudo Image Tracking (VPIT) の変分ニューラルネットワークによるバージョンを提案する。
論文 参考訳(メタデータ) (2023-02-12T13:34:50Z) - Robustness and invariance properties of image classifiers [8.970032486260695]
ディープニューラルネットワークは多くの画像分類タスクで印象的な結果を得た。
ディープネットワークは、多種多様なセマンティック保存画像修正に対して堅牢ではない。
画像分類器の小さなデータ分散シフトに対する堅牢性の低さは、その信頼性に関する深刻な懸念を引き起こす。
論文 参考訳(メタデータ) (2022-08-30T11:00:59Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Robustness in Deep Learning for Computer Vision: Mind the gap? [13.576376492050185]
我々は、コンピュータビジョンのためのディープラーニングにおいて、現在の定義と非敵対的堅牢性に向けての進歩を特定し、分析し、要約する。
この研究の分野は、敵対的機械学習に対して、不当にあまり注目されていないことがわかりました。
論文 参考訳(メタデータ) (2021-12-01T16:42:38Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image
Quality [3.5480752735999417]
セグメンテーションなどの下流分析を成功させるためには、医用画像の品質管理(QC)が不可欠である。
本研究では,不確実性を推定する確率的ネットワークをヘテロセダスティックノイズモデルにより構築し,そのプロセスを自動化することを目的とする。
シミュレーションされた人工物を用いて訓練したモデルは、実世界の画像に不確実性を示す情報的尺度を提供するとともに、人間のレーダが特定した問題画像に対する不確実性予測を検証する。
論文 参考訳(メタデータ) (2020-01-31T16:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。