論文の概要: Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models
- arxiv url: http://arxiv.org/abs/2410.07840v1
- Date: Thu, 10 Oct 2024 11:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:25:50.463743
- Title: Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models
- Title(参考訳): 生成前の保護 - 離散的な生成モデル内のコードの誤り訂正
- Authors: María Martínez-García, Grace Villacrés, David Mitchell, Pablo M. Olmos,
- Abstract要約: 本稿では,離散潜在変数モデルにおける変分推論を強化する新しい手法を提案する。
我々は誤り訂正符号(ECC)を活用し、潜伏表現に冗長性を導入する。
この冗長性は変分後部によって利用され、より正確な推定値が得られる。
- 参考スコア(独自算出の注目度): 3.053842954605396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements in deep probabilistic models, learning low-dimensional discrete latent representations remains a challenging task. In this paper, we introduce a novel method that enhances variational inference in discrete latent variable models by leveraging Error Correcting Codes (ECCs) to introduce redundancy in the latent representations. This redundancy is then exploited by the variational posterior to yield more accurate estimates, thereby narrowing the variational gap. Inspired by ECCs commonly used in digital communications and data storage, we demonstrate proof-of-concept using a Discrete Variational Autoencoder (DVAE) with binary latent variables and block repetition codes. We further extend this idea to a hierarchical structure based on polar codes, where certain latent bits are more robustly protected. Our method improves generation quality, data reconstruction, and uncertainty calibration compared to the uncoded DVAE, even when trained with tighter bounds such as the Importance Weighted Autoencoder (IWAE) objective. In particular, we demonstrate superior performance on MNIST, FMNIST, CIFAR10, and Tiny ImageNet datasets. The general approach of integrating ECCs into variational inference is compatible with existing techniques to boost variational inference, such as importance sampling or Hamiltonian Monte Carlo. We also outline the key properties ECCs must have to effectively enhance discrete variational inference.
- Abstract(参考訳): 深層確率モデルの大幅な進歩にもかかわらず、低次元離散潜在表現の学習は依然として難しい課題である。
本稿では、誤り訂正符号(ECC)を利用して、遅延表現に冗長性を導入することにより、離散潜在変数モデルの変動推論を強化する新しい手法を提案する。
この冗長性は変分後部によって利用され、より正確な推定値が得られるため、変分間隙を狭める。
デジタル通信やデータストレージでよく使われるECCに着想を得て,2変数の潜伏変数とブロック繰り返し符号を持つ離散変分オートエンコーダ(DVAE)を用いた概念実証を行った。
我々はさらに、このアイデアを極性符号に基づく階層構造へと拡張し、ある遅延ビットはより堅牢に保護される。
本手法は,IWAE(Importance Weighted Autoencoder)の目的など,より厳密な境界でトレーニングした場合でも,未符号化のDVAEと比較して生成品質,データ再構成,不確実性を向上する。
特に、MNIST、FMNIST、CIFAR10、Tiny ImageNetデータセットにおいて優れた性能を示す。
ECCを変分推論に統合する一般的なアプローチは、重要サンプリングやハミルトニアンモンテカルロのような変分推論を促進する既存の手法と互換性がある。
また、ECCが離散変動推論を効果的に拡張する必要がある重要な特性について概説する。
関連論文リスト
- How to train your VAE [0.0]
変分オートエンコーダ(VAE)は、機械学習における生成モデリングと表現学習の基盤となっている。
本稿では,ELBO(エビデンス・ロウアー・バウンド)における重要な構成要素であるKLディバージェンス(Kulback-Leibler)の解釈について検討する。
提案手法は, ELBOを後続確率のガウス混合体で再定義し, 正規化項を導入し, テクスチャリアリズムを高めるためにPatchGAN識別器を用いる。
論文 参考訳(メタデータ) (2023-09-22T19:52:28Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z) - Deterministic Decoding for Discrete Data in Variational Autoencoders [5.254093731341154]
サンプリングの代わりに最上位のトークンを選択するシーケンシャルデータに対して,決定論的デコーダ(DD-VAE)を用いたVAEモデルについて検討する。
分子生成や最適化問題を含む複数のデータセット上でのDD-VAEの性能を示す。
論文 参考訳(メタデータ) (2020-03-04T16:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。