Proof of a Universal Speed Limit on Fast Scrambling in Quantum Systems
- URL: http://arxiv.org/abs/2404.15403v1
- Date: Tue, 23 Apr 2024 18:00:01 GMT
- Title: Proof of a Universal Speed Limit on Fast Scrambling in Quantum Systems
- Authors: Amit Vikram, Laura Shou, Victor Galitski,
- Abstract summary: We prove that the time required for sustained information scrambling in any Hamiltonian quantum system is universally at least logarithmic in the entanglement entropy of scrambled states.
This addresses two foundational problems in nonequilibrium quantum dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove that the time required for sustained information scrambling in any Hamiltonian quantum system is universally at least logarithmic in the entanglement entropy of scrambled states. This addresses two foundational problems in nonequilibrium quantum dynamics. (1) It sets the earliest possible time for the applicability of equilibrium statistical mechanics in a quantum system coupled to a bath at a finite temperature. (2) It proves a version of the fast scrambling conjecture, originally motivated in models associated with black holes, as a fundamental property of quantum mechanics itself. Our result builds on a refinement of the energy-time uncertainty principle in terms of the infinite temperature spectral form factor in quantum chaos. We generalize this formulation to arbitrary initial states of the bath, including finite temperature states, by mapping Hamiltonian dynamics with any initial state to nonunitary dynamics at infinite temperature. A regularized spectral form factor emerges naturally from this procedure, whose decay is universally constrained by analyticity in complex time. This establishes an exact speed limit on information scrambling by the most general quantum mechanical Hamiltonian, without any restrictions on locality or the nature of interactions.
Related papers
- Equivalence between the second order steady state for spin-Boson model and its quantum mean force Gibbs state [3.1406146587437904]
When a quantum system is non-negligible, its steady state deviates from the textbook Gibbs state.
We show that this steady state is exactly identical to the corresponding generalized Gibbs state.
We use our results to study the dynamics and the steady state of a double quantum dot system under physically relevant choices of parameters.
arXiv Detail & Related papers (2024-11-13T18:49:53Z) - Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exact universal bounds on quantum dynamics and fast scrambling [0.0]
We show that the spectral form factor sets a universal state-independent bound on the quantum dynamics of a complete set of initial states over arbitrarily long times.
We use this result to constrain the scrambling of information in interacting many-body systems.
arXiv Detail & Related papers (2022-12-28T18:47:20Z) - Nonlocality as the source of purely quantum dynamics of BCS
superconductors [0.0]
We show that the classical (mean-field) description of far from equilibrium superconductivity is exact in the thermodynamic limit for local observables.
We do this by solving for and comparing exact quantum and exact classical long-time dynamics of a BCS superconductor.
arXiv Detail & Related papers (2022-08-15T16:33:38Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.