論文の概要: Can Large Language Models Learn the Physics of Metamaterials? An Empirical Study with ChatGPT
- arxiv url: http://arxiv.org/abs/2404.15458v1
- Date: Tue, 23 Apr 2024 19:05:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-25 15:23:04.513196
- Title: Can Large Language Models Learn the Physics of Metamaterials? An Empirical Study with ChatGPT
- Title(参考訳): メタマテリアルの物理を学習できる言語モデル : ChatGPTを用いた実証的研究
- Authors: Darui Lu, Yang Deng, Jordan M. Malof, Willie J. Padilla,
- Abstract要約: ChatGPT、Gemini、LlaMa、Claudeといった大規模言語モデル(LLM)は、インターネットから解析された大量のテキストに基づいて訓練されている。
テキストプロンプトが与えられた範囲の周波数で電磁スペクトルを予測できる最大4万データに基づいて微調整されたLLMを提案する。
- 参考スコア(独自算出の注目度): 9.177651206337005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) such as ChatGPT, Gemini, LlaMa, and Claude are trained on massive quantities of text parsed from the internet and have shown a remarkable ability to respond to complex prompts in a manner often indistinguishable from humans. We present a LLM fine-tuned on up to 40,000 data that can predict electromagnetic spectra over a range of frequencies given a text prompt that only specifies the metasurface geometry. Results are compared to conventional machine learning approaches including feed-forward neural networks, random forest, linear regression, and K-nearest neighbor (KNN). Remarkably, the fine-tuned LLM (FT-LLM) achieves a lower error across all dataset sizes explored compared to all machine learning approaches including a deep neural network. We also demonstrate the LLM's ability to solve inverse problems by providing the geometry necessary to achieve a desired spectrum. LLMs possess some advantages over humans that may give them benefits for research, including the ability to process enormous amounts of data, find hidden patterns in data, and operate in higher-dimensional spaces. We propose that fine-tuning LLMs on large datasets specific to a field allows them to grasp the nuances of that domain, making them valuable tools for research and analysis.
- Abstract(参考訳): ChatGPT、Gemini、LlaMa、Claudeといった大規模な言語モデル(LLM)は、インターネットから解析された大量のテキストに基づいて訓練されており、人間と区別できない方法で複雑なプロンプトに応答する驚くべき能力を示している。
テキストプロンプトが変地幾何学のみを指定した場合に、最大4万データに対して微調整を行い、電磁スペクトルを様々な周波数で予測する。
結果は、フィードフォワードニューラルネットワーク、ランダムフォレスト、線形回帰、K-nearest neighbor(KNN)といった従来の機械学習手法と比較される。
注目すべきなのは、細調整されたLLM(FT-LLM)は、ディープニューラルネットワークを含むすべての機械学習アプローチと比較して、調査対象のデータセットサイズ全体のエラーが低いことだ。
また、所望のスペクトルを得るのに必要な幾何を提供することで、逆問題を解決するLLMの能力を実証する。
LLMには、膨大な量のデータを処理し、データの中に隠れたパターンを見つけ、高次元空間で操作する能力など、研究に利益をもたらすような、人間に対していくつかの利点がある。
フィールド固有の大規模データセット上での微調整 LLM は,その領域のニュアンスを把握し,研究や分析に有用なツールとなることを提案する。
関連論文リスト
- All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Benchmarking Large Language Models for Molecule Prediction Tasks [7.067145619709089]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクの最前線にある。
LLMは分子予測タスクを効果的に扱えるのか?
6つの標準分子データセットの分類および回帰予測タスクを同定する。
テキストベースのモデルと、分子の幾何学的構造を分析するために特別に設計されたモデルを含む、既存の機械学習(ML)モデルと比較する。
論文 参考訳(メタデータ) (2024-03-08T05:59:56Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP)は、知識グラフから有益な知識を学ぶために、事前訓練された言語モデルを支援するための新しいプラグアンドプレイ方式である。
複数のデータセットに対する大規模な実験は、常識的および生物医学的推論タスクにおいて、GNPの優位性を示す。
論文 参考訳(メタデータ) (2023-09-27T06:33:29Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
大規模言語モデル(LLM)は、広範な共通知識と強力な意味理解能力を持つことが証明されている。
LLMs-as-EnhancersとLLMs-as-Predictorsの2つのパイプラインについて検討する。
論文 参考訳(メタデータ) (2023-07-07T05:31:31Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
大規模言語モデル(LLM)は、高い確率で因果引数を生成することができる。
LLMは人間のドメインの専門家によって因果解析のセットアップの労力を節約するために使われる。
論文 参考訳(メタデータ) (2023-04-28T19:00:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。