A Survey of Deep Long-Tail Classification Advancements
- URL: http://arxiv.org/abs/2404.15593v1
- Date: Wed, 24 Apr 2024 01:59:02 GMT
- Title: A Survey of Deep Long-Tail Classification Advancements
- Authors: Charika de Alvis, Suranga Seneviratne,
- Abstract summary: Many data distributions in the real world are hardly uniform. Instead, skewed and long-tailed distributions of various kinds are commonly observed.
This poses an interesting problem for machine learning, where most algorithms assume or work well with uniformly distributed data.
The problem is further exacerbated by current state-of-the-art deep learning models requiring large volumes of training data.
- Score: 1.6233132273470656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many data distributions in the real world are hardly uniform. Instead, skewed and long-tailed distributions of various kinds are commonly observed. This poses an interesting problem for machine learning, where most algorithms assume or work well with uniformly distributed data. The problem is further exacerbated by current state-of-the-art deep learning models requiring large volumes of training data. As such, learning from imbalanced data remains a challenging research problem and a problem that must be solved as we move towards more real-world applications of deep learning. In the context of class imbalance, state-of-the-art (SOTA) accuracies on standard benchmark datasets for classification typically fall less than 75%, even for less challenging datasets such as CIFAR100. Nonetheless, there has been progress in this niche area of deep learning. To this end, in this survey, we provide a taxonomy of various methods proposed for addressing the problem of long-tail classification, focusing on works that happened in the last few years under a single mathematical framework. We also discuss standard performance metrics, convergence studies, feature distribution and classifier analysis. We also provide a quantitative comparison of the performance of different SOTA methods and conclude the survey by discussing the remaining challenges and future research direction.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions [0.017476232824732776]
Time-series anomaly detection plays an important role in engineering processes.
This survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made.
It presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis.
arXiv Detail & Related papers (2024-08-07T13:01:10Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
This paper extends the current research into missing modalities to the low-data regime.
It is often expensive to get full-modality data and sufficient annotated training samples.
We propose to use retrieval-augmented in-context learning to address these two crucial issues.
arXiv Detail & Related papers (2024-03-14T14:19:48Z) - Can Tree Based Approaches Surpass Deep Learning in Anomaly Detection? A
Benchmarking Study [0.6291443816903801]
This paper evaluates a diverse array of machine learning-based anomaly detection algorithms.
The paper contributes significantly by conducting an unbiased comparison of various anomaly detection algorithms.
arXiv Detail & Related papers (2024-02-11T19:12:51Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Towards Federated Long-Tailed Learning [76.50892783088702]
Data privacy and class imbalance are the norm rather than the exception in many machine learning tasks.
Recent attempts have been launched to, on one side, address the problem of learning from pervasive private data, and on the other side, learn from long-tailed data.
This paper focuses on learning with long-tailed (LT) data distributions under the context of the popular privacy-preserved federated learning (FL) framework.
arXiv Detail & Related papers (2022-06-30T02:34:22Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - A Survey of Methods for Managing the Classification and Solution of Data
Imbalance Problem [0.0]
This paper focuses on the architecture of single, hybrid, and ensemble method design to understand the current status of improving classification output in machine learning techniques to fix problems with class imbalances.
This survey paper also includes a statistical analysis of the classification algorithms under various methods and several other experimental conditions, as well as datasets used in different research papers.
arXiv Detail & Related papers (2020-12-22T08:03:22Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
We propose an ensemble of class-balanced experts that combines the strength of diverse classifiers.
Our ensemble of class-balanced experts reaches results close to state-of-the-art and an extended ensemble establishes a new state-of-the-art on two benchmarks for long-tailed recognition.
arXiv Detail & Related papers (2020-04-07T20:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.