論文の概要: Affordance Blending Networks
- arxiv url: http://arxiv.org/abs/2404.15648v1
- Date: Wed, 24 Apr 2024 05:07:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:09:25.149443
- Title: Affordance Blending Networks
- Title(参考訳): Affordance Blending Networks
- Authors: Hakan Aktas, Yukie Nagai, Minoru Asada, Erhan Oztop, Emre Ugur,
- Abstract要約: 本稿では,オブジェクト,アクション,エフェクトを1つの潜在表現に統一するモデルを提案する。
実世界のケースでは,本モデルが直接模倣に利用できることを示す。
また,異なるロボットの動作を関連付けるために,クロス・エボディメント・トランスファーの基盤として,サプライズを提案する。
- 参考スコア(独自算出の注目度): 1.9922905420195371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Affordances, a concept rooted in ecological psychology and pioneered by James J. Gibson, have emerged as a fundamental framework for understanding the dynamic relationship between individuals and their environments. Expanding beyond traditional perceptual and cognitive paradigms, affordances represent the inherent effect and action possibilities that objects offer to the agents within a given context. As a theoretical lens, affordances bridge the gap between effect and action, providing a nuanced understanding of the connections between agents' actions on entities and the effect of these actions. In this study, we propose a model that unifies object, action and effect into a single latent representation in a common latent space that is shared between all affordances that we call the affordance space. Using this affordance space, our system is able to generate effect trajectories when action and object are given and is able to generate action trajectories when effect trajectories and objects are given. In the experiments, we showed that our model does not learn the behavior of each object but it learns the affordance relations shared by the objects that we call equivalences. In addition to simulated experiments, we showed that our model can be used for direct imitation in real world cases. We also propose affordances as a base for Cross Embodiment transfer to link the actions of different robots. Finally, we introduce selective loss as a solution that allows valid outputs to be generated for indeterministic model inputs.
- Abstract(参考訳): Affordancesは生態心理学に根ざし、James J. Gibsonによって開拓された概念であり、個人と環境の間の動的関係を理解するための基本的な枠組みとして登場した。
伝統的な知覚的および認知的パラダイムを超えて、余裕は、与えられたコンテキスト内のエージェントにオブジェクトが与える本質的な効果と行動の可能性を表す。
理論レンズとして、余剰は効果と作用の間のギャップを埋め、エージェントの実体に対する作用とこれらの作用の効果の間の関係を微妙に理解する。
本研究では, 対象, 行動, 効果を共通潜在空間内の1つの潜在表現に統一するモデルを提案する。
この余剰空間を利用することで,アクションやオブジェクトが与えられたときのエフェクトトラジェクトリを生成し,効果トラジェクトリやオブジェクトが与えられたときのアクショントラジェクトリを生成することができる。
実験では,本モデルでは各対象の振る舞いを学習せず,同値性と呼ぶ対象が共有する余剰関係を学習することを示した。
シミュレーション実験に加えて,実世界の事例において,本モデルが直接模倣に利用できることを示した。
また,異なるロボットの動作を関連付けるために,クロス・エボディメント・トランスファーの基盤として,サプライズを提案する。
最後に、決定論的モデル入力に対して有効な出力を生成するソリューションとして選択的損失を導入する。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
本稿では,対話的知覚と3次元点雲からのオンライン軸推定を統合したクローズドループパイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:59:56Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
本稿では,3次元オブジェクト認識キャラクタ合成における新しいシーンオブジェクトへのロバストさと一般化が,参照オブジェクトを1つも持たないモーションモデルをトレーニングすることで実現可能であることを示す。
我々は、オブジェクト専用のデータセットに基づいて訓練された暗黙的な特徴表現を活用し、オブジェクトの周りのSE(3)-同変記述体フィールドをエンコードする。
本研究では,3次元仮想キャラクタの動作と相互作用の質,および未知のオブジェクトを持つシナリオに対するロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-24T17:59:51Z) - Fine-grained Affordance Annotation for Egocentric Hand-Object
Interaction Videos [27.90643693526274]
物価は、人間の運動能力と物体の物理的性質に基づく行動可能性に関する情報を提供する。
本稿では,これらの課題に対処するための効果的なアノテーション手法を提案する。
我々はEPIC-KITCHENSデータセットにこのスキームを適用して新しいアノテーションを提供し、アベイランス認識、ハンドオブジェクト相互作用ホットスポット予測、アベイランスのクロスドメイン評価などのタスクでアノテーションをテストする。
論文 参考訳(メタデータ) (2023-02-07T07:05:00Z) - Object-Centric Scene Representations using Active Inference [4.298360054690217]
シーンとその成分オブジェクトを生の知覚データから表現することは、ロボットが環境と対話できるコア機能である。
本稿では,エージェントがオブジェクトカテゴリを推論できる階層型オブジェクト中心生成モデルを活用する,シーン理解のための新しいアプローチを提案する。
また,アクティブな視覚エージェントの動作を評価するために,対象対象の視点を考慮し,最適な視点を見出す必要がある新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2023-02-07T06:45:19Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - Improving Object Permanence using Agent Actions and Reasoning [8.847502932609737]
既存のアプローチは、低レベルの知覚からオブジェクト永続性を学ぶ。
我々は、ロボットが実行された動作に関する知識を使用する場合、オブジェクトの永続性を改善することができると論じる。
論文 参考訳(メタデータ) (2021-10-01T07:09:49Z) - Plug and Play, Model-Based Reinforcement Learning [60.813074750879615]
我々は、既知のオブジェクトクラスから新しいオブジェクトをゼロショットで統合できるオブジェクトベースの表現を導入する。
これは、グローバル遷移力学を局所遷移関数の和として表現することで達成される。
実験により, 様々なセットアップにおいて, サンプル効率が達成できることが示された。
論文 参考訳(メタデータ) (2021-08-20T01:20:15Z) - Property-Aware Robot Object Manipulation: a Generative Approach [57.70237375696411]
本研究では,操作対象の隠れた特性に適応したロボットの動きを生成する方法に焦点を当てた。
本稿では,ジェネレーティブ・アドバイサル・ネットワークを利用して,オブジェクトの特性に忠実な新しいアクションを合成する可能性について検討する。
以上の結果から,ジェネレーティブ・アドバイサル・ネットは,新規かつ有意義な輸送行動を生み出すための強力なツールとなる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-08T14:15:36Z) - Object and Relation Centric Representations for Push Effect Prediction [18.990827725752496]
プッシュは、プレグレープ操作からシーンアレンジメントまでのタスクに使用される、非包括的操作スキルである。
本稿では,プッシュ動作の効果予測とパラメータ推定のためのグラフニューラルネットワークに基づくフレームワークを提案する。
本フレームワークは,異なる種類の接合体と異なる質量を有する物体を介して接続された異なる形状の多部オブジェクトを含む実環境と模擬環境の両方で検証される。
論文 参考訳(メタデータ) (2021-02-03T15:09:12Z) - Human and Machine Action Prediction Independent of Object Information [1.0806206850043696]
行動中に変化する物体間関係の役割について検討する。
我々は平均して、アクションの持続時間の64%以下で行動を予測する。
論文 参考訳(メタデータ) (2020-04-22T12:13:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。