論文の概要: SRAGAN: Saliency Regularized and Attended Generative Adversarial Network for Chinese Ink-wash Painting Generation
- arxiv url: http://arxiv.org/abs/2404.15743v1
- Date: Wed, 24 Apr 2024 09:02:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 19:40:12.089199
- Title: SRAGAN: Saliency Regularized and Attended Generative Adversarial Network for Chinese Ink-wash Painting Generation
- Title(参考訳): SRAGAN: 清墨画創出のための正則化・適応生成支援ネットワーク
- Authors: Xiang Gao, Yuqi Zhang,
- Abstract要約: saliency mapは2つの側面から、明示的にも暗黙的にもコンテンツ正規化に利用されます。
また,サリエンシ・マスクを利用したサリエンシ・アテンデント・ディミネータ・ネットワークを提案し,サリエンシ・イメージ領域に生成的敵意を集中させる。
- 参考スコア(独自算出の注目度): 17.238908596339904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper handles the problem of converting real pictures into traditional Chinese ink-wash paintings, i.e., Chinese ink-wash painting style transfer. Though this problem could be realized by a wide range of image-to-image translation models, a notable issue with all these methods is that the original image content details could be easily erased or corrupted due to transfer of ink-wash style elements. To solve or ameliorate this issue, we propose to incorporate saliency detection into the unpaired image-to-image translation framework to regularize content information of the generated paintings. The saliency map is utilized for content regularization from two aspects, both explicitly and implicitly: (\romannumeral1) we propose saliency IOU (SIOU) loss to explicitly regularize saliency consistency before and after stylization; (\romannumeral2) we propose saliency adaptive normalization (SANorm) which implicitly enhances content integrity of the generated paintings by injecting saliency information to the generator network to guide painting generation. Besides, we also propose saliency attended discriminator network which harnesses saliency mask to focus generative adversarial attention onto salient image regions, it contributes to producing finer ink-wash stylization effect for salient objects of images. Qualitative and quantitative experiments consistently demonstrate superiority of our model over related advanced methods for Chinese ink-wash painting style transfer.
- Abstract(参考訳): 本論文は、実際の絵を中国の伝統的な墨画、すなわち中国の墨画様式の移譲に転換する問題に対処する。
この問題は、画像から画像への翻訳モデルによって実現できるが、これらすべての方法で注目すべき問題は、オリジナルの画像内容の詳細がインクウォッシュスタイルの要素の転送によって容易に消去または破損できることである。
この問題を解消または改善するために,未完成画像から画像への翻訳フレームワークに塩分検出を導入し,生成した絵画のコンテンツ情報を正規化することを提案する。
本手法では,サリエンシ・アダプティブ・ノーマライゼーション(SANorm)を提案し,サリエンシ・アダプティブ・ノーマライゼーション(SANorm)を提案し,サリエンシ・インダプティブ・ノーマライゼーション(SANorm)を提案し,サリエンシ・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インジェクションにより,サリエンシ・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション(SANorm)を提案する。
また,サリエンシ・マスクを用いたサリエンシ・アテンデント・ディシミネータ・ネットワークを提案し,サリエンシ・マスクを用いたサリエンシ・アテンシ・アテンシ・アテンシネータ・ネットワークを提案し,画像のサリエンシ・オブジェクトに対してより微細なインク・ウォッシュ・スタイリゼーション・エフェクトの創出に寄与する。
定性的かつ定量的な実験は、中国の墨画様式の伝達方法よりも、我々のモデルの方が優れていることを一貫して示している。
関連論文リスト
- Improving Text-guided Object Inpainting with Semantic Pre-inpainting [95.17396565347936]
我々は,典型的な単一ステージオブジェクトを2つのカスケードプロセス – セマンティックプリペイントと高磁場オブジェクト生成 – に分解する。
これを実現するために,トランスフォーマーをベースとしたセマンティックインパインとオブジェクトインパインティング拡散モデルをカスケードし,新しいCAscaded Transformer-Diffusionフレームワークを実現する。
論文 参考訳(メタデータ) (2024-09-12T17:55:37Z) - DAFT-GAN: Dual Affine Transformation Generative Adversarial Network for Text-Guided Image Inpainting [2.656795553429629]
そこで本研究では,2つのアフィン変換生成逆数ネットワーク(DAFT-GAN)を提案する。
提案手法は, 定性評価と定量的評価の両方において, 既存のGANモデルよりも優れている。
論文 参考訳(メタデータ) (2024-08-09T09:28:42Z) - Sketch-guided Image Inpainting with Partial Discrete Diffusion Process [5.005162730122933]
スケッチ誘導インペイントのための新しい部分離散拡散法(PDDP)を提案する。
PDDPは画像のマスキング領域を破損させ、手描きスケッチで条件付けられたこれらのマスキング領域を再構築する。
提案するトランスモジュールは,2つの入力を受信する。マスク領域を含む画像はインペイントされ,クエリスケッチは逆拡散過程をモデル化する。
論文 参考訳(メタデータ) (2024-04-18T07:07:38Z) - BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNetは、ピクセルレベルのマスク付きイメージ機能を事前訓練されたDMに埋め込むために設計された、新しいプラグアンドプレイデュアルブランチモデルである。
BrushNetは、画像品質、マスク領域保存、テキストコヒーレンスを含む7つの主要な指標で、既存のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-11T17:59:31Z) - DLP-GAN: learning to draw modern Chinese landscape photos with
generative adversarial network [20.74857981451259]
中国の風景画は独特で芸術的な様式であり、その画法は色と現実的な物体表現の両方において非常に抽象的である。
従来は、近代の絵から古代の墨画への移行に焦点が当てられていたが、風景画を近代の絵に翻訳することにはほとんど関心が向けられていない。
論文 参考訳(メタデータ) (2024-03-06T04:46:03Z) - Portrait Diffusion: Training-free Face Stylization with
Chain-of-Painting [64.43760427752532]
顔のスタイリゼーション(face stylization)とは、顔の特定の肖像画スタイルへの変換を指す。
現在の手法では、ファインチューン事前訓練された生成モデルに対するサンプルベースの適応アプローチが必要とされる。
本稿では,ポートレートディフュージョン(Portrait Diffusion)という,トレーニング不要な顔スタイル化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:48:35Z) - LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
レイアウト計画と画像生成を実現するための粗大なパラダイムを提案する。
提案手法は,フォトリアリスティックなレイアウトと画像生成の観点から,最先端のモデルよりも優れている。
論文 参考訳(メタデータ) (2023-08-09T17:45:04Z) - DisenBooth: Identity-Preserving Disentangled Tuning for Subject-Driven
Text-to-Image Generation [50.39533637201273]
主観駆動型テキスト・ツー・イメージ生成のためのID保存型アンタングル型チューニングフレームワークであるDisenBoothを提案する。
DisenBoothは、ID保存の埋め込みとアイデンティティ関連の埋め込みを組み合わせることで、より世代的柔軟性と制御性を示す。
論文 参考訳(メタデータ) (2023-05-05T09:08:25Z) - StyO: Stylize Your Face in Only One-shot [11.715601955568536]
本稿では,1つの芸術的対象を持つ顔のスタイリングに焦点を当てた。
このタスクの既存の作業は、ジオメトリの変化を達成しながら、ソース内容の保持に失敗することが多い。
上記の問題を解決するために,新しいStyOモデル,すなわち1ショットで顔をスタイリングする。
論文 参考訳(メタデータ) (2023-03-06T15:48:33Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Two-Stream Appearance Transfer Network for Person Image Generation [16.681839931864886]
画像生成や翻訳に広く用いられているGAN(Generative Adversarial Network)は、空間的局所的および翻訳同変演算子に依存している。
本稿では,この課題に対処するために,新しい2ストリームの外観伝達ネットワーク(2s-ATN)を提案する。
ソースストリームとターゲットストリームで構成される多段階アーキテクチャである。各ステージは外観伝達モジュールと複数の2ストリーム特徴融合モジュールを備える。
論文 参考訳(メタデータ) (2020-11-09T04:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。