論文の概要: SRAGAN: Saliency Regularized and Attended Generative Adversarial Network for Chinese Ink-wash Painting Generation
- arxiv url: http://arxiv.org/abs/2404.15743v1
- Date: Wed, 24 Apr 2024 09:02:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-26 19:40:12.089199
- Title: SRAGAN: Saliency Regularized and Attended Generative Adversarial Network for Chinese Ink-wash Painting Generation
- Title(参考訳): SRAGAN: 清墨画創出のための正則化・適応生成支援ネットワーク
- Authors: Xiang Gao, Yuqi Zhang,
- Abstract要約: saliency mapは2つの側面から、明示的にも暗黙的にもコンテンツ正規化に利用されます。
また,サリエンシ・マスクを利用したサリエンシ・アテンデント・ディミネータ・ネットワークを提案し,サリエンシ・イメージ領域に生成的敵意を集中させる。
- 参考スコア(独自算出の注目度): 17.238908596339904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper handles the problem of converting real pictures into traditional Chinese ink-wash paintings, i.e., Chinese ink-wash painting style transfer. Though this problem could be realized by a wide range of image-to-image translation models, a notable issue with all these methods is that the original image content details could be easily erased or corrupted due to transfer of ink-wash style elements. To solve or ameliorate this issue, we propose to incorporate saliency detection into the unpaired image-to-image translation framework to regularize content information of the generated paintings. The saliency map is utilized for content regularization from two aspects, both explicitly and implicitly: (\romannumeral1) we propose saliency IOU (SIOU) loss to explicitly regularize saliency consistency before and after stylization; (\romannumeral2) we propose saliency adaptive normalization (SANorm) which implicitly enhances content integrity of the generated paintings by injecting saliency information to the generator network to guide painting generation. Besides, we also propose saliency attended discriminator network which harnesses saliency mask to focus generative adversarial attention onto salient image regions, it contributes to producing finer ink-wash stylization effect for salient objects of images. Qualitative and quantitative experiments consistently demonstrate superiority of our model over related advanced methods for Chinese ink-wash painting style transfer.
- Abstract(参考訳): 本論文は、実際の絵を中国の伝統的な墨画、すなわち中国の墨画様式の移譲に転換する問題に対処する。
この問題は、画像から画像への翻訳モデルによって実現できるが、これらすべての方法で注目すべき問題は、オリジナルの画像内容の詳細がインクウォッシュスタイルの要素の転送によって容易に消去または破損できることである。
この問題を解消または改善するために,未完成画像から画像への翻訳フレームワークに塩分検出を導入し,生成した絵画のコンテンツ情報を正規化することを提案する。
本手法では,サリエンシ・アダプティブ・ノーマライゼーション(SANorm)を提案し,サリエンシ・アダプティブ・ノーマライゼーション(SANorm)を提案し,サリエンシ・インダプティブ・ノーマライゼーション(SANorm)を提案し,サリエンシ・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インジェクションにより,サリエンシ・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション・インフォメーション(SANorm)を提案する。
また,サリエンシ・マスクを用いたサリエンシ・アテンデント・ディシミネータ・ネットワークを提案し,サリエンシ・マスクを用いたサリエンシ・アテンシ・アテンシ・アテンシネータ・ネットワークを提案し,画像のサリエンシ・オブジェクトに対してより微細なインク・ウォッシュ・スタイリゼーション・エフェクトの創出に寄与する。
定性的かつ定量的な実験は、中国の墨画様式の伝達方法よりも、我々のモデルの方が優れていることを一貫して示している。
関連論文リスト
- Free-Lunch Color-Texture Disentanglement for Stylized Image Generation [58.406368812760256]
本稿では,タイマライズされたT2I生成において,フリーランチなカラーテクスチャ・ディコンタングルを実現するための,最初のチューニング自由アプローチを提案する。
色とテクスチャの基準画像からCTE(Color-Texture Embeddings)を分離・抽出する技術を開発した。
生成した画像の色パレットが色基準と密接に一致していることを確認するため、白と彩色変換を適用する。
論文 参考訳(メタデータ) (2025-03-18T14:10:43Z) - Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator [44.620847608977776]
ディプチッチ・プロンプティング(Diptych Prompting)は、被写体を正確にアライメントした塗装タスクとして再解釈する、新しいゼロショットアプローチである。
提案手法は主観的画像生成だけでなく, 主観的画像生成と主観的画像編集もサポートする。
論文 参考訳(メタデータ) (2024-11-23T06:17:43Z) - Improving Text-guided Object Inpainting with Semantic Pre-inpainting [95.17396565347936]
我々は,典型的な単一ステージオブジェクトを2つのカスケードプロセス – セマンティックプリペイントと高磁場オブジェクト生成 – に分解する。
これを実現するために,トランスフォーマーをベースとしたセマンティックインパインとオブジェクトインパインティング拡散モデルをカスケードし,新しいCAscaded Transformer-Diffusionフレームワークを実現する。
論文 参考訳(メタデータ) (2024-09-12T17:55:37Z) - DAFT-GAN: Dual Affine Transformation Generative Adversarial Network for Text-Guided Image Inpainting [2.656795553429629]
そこで本研究では,2つのアフィン変換生成逆数ネットワーク(DAFT-GAN)を提案する。
提案手法は, 定性評価と定量的評価の両方において, 既存のGANモデルよりも優れている。
論文 参考訳(メタデータ) (2024-08-09T09:28:42Z) - Sketch-guided Image Inpainting with Partial Discrete Diffusion Process [5.005162730122933]
スケッチ誘導インペイントのための新しい部分離散拡散法(PDDP)を提案する。
PDDPは画像のマスキング領域を破損させ、手描きスケッチで条件付けられたこれらのマスキング領域を再構築する。
提案するトランスモジュールは,2つの入力を受信する。マスク領域を含む画像はインペイントされ,クエリスケッチは逆拡散過程をモデル化する。
論文 参考訳(メタデータ) (2024-04-18T07:07:38Z) - BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNetは、ピクセルレベルのマスク付きイメージ機能を事前訓練されたDMに埋め込むために設計された、新しいプラグアンドプレイデュアルブランチモデルである。
BrushNetは、画像品質、マスク領域保存、テキストコヒーレンスを含む7つの主要な指標で、既存のモデルよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-11T17:59:31Z) - DLP-GAN: learning to draw modern Chinese landscape photos with
generative adversarial network [20.74857981451259]
中国の風景画は独特で芸術的な様式であり、その画法は色と現実的な物体表現の両方において非常に抽象的である。
従来は、近代の絵から古代の墨画への移行に焦点が当てられていたが、風景画を近代の絵に翻訳することにはほとんど関心が向けられていない。
論文 参考訳(メタデータ) (2024-03-06T04:46:03Z) - Decoupled Textual Embeddings for Customized Image Generation [62.98933630971543]
カスタマイズされたテキスト・ツー・イメージ生成は、ユーザが指定した概念を少数の画像で学習することを目的としている。
既存の方法は、通常、過剰な問題に悩まされ、学習された概念と対象と無関係な情報を絡み合わせる。
フレキシブルなテキスト・ツー・イメージ生成のための不整合概念の埋め込みを学習する新しいアプローチであるDETEXを提案する。
論文 参考訳(メタデータ) (2023-12-19T03:32:10Z) - DreamInpainter: Text-Guided Subject-Driven Image Inpainting with
Diffusion Models [37.133727797607676]
本研究は,テキストガイドによる主題駆動画像の描画について紹介する。
我々は、被写体再現の精度を確保するために、密集した被写体特徴を計算する。
我々は、余分な被写体の詳細を排除するために識別トークン選択モジュールを使用します。
論文 参考訳(メタデータ) (2023-12-05T22:23:19Z) - Portrait Diffusion: Training-free Face Stylization with
Chain-of-Painting [64.43760427752532]
顔のスタイリゼーション(face stylization)とは、顔の特定の肖像画スタイルへの変換を指す。
現在の手法では、ファインチューン事前訓練された生成モデルに対するサンプルベースの適応アプローチが必要とされる。
本稿では,ポートレートディフュージョン(Portrait Diffusion)という,トレーニング不要な顔スタイル化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:48:35Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
レイアウト計画と画像生成を実現するための粗大なパラダイムを提案する。
提案手法は,フォトリアリスティックなレイアウトと画像生成の観点から,最先端のモデルよりも優れている。
論文 参考訳(メタデータ) (2023-08-09T17:45:04Z) - StyleStegan: Leak-free Style Transfer Based on Feature Steganography [19.153040728118285]
既存のスタイル転送方式は 重大なコンテンツ漏洩に悩まされています
特徴ステガノグラフィーに基づくリークフリーなスタイル転送手法を提案する。
その結果、StyleSteganは、シリアルおよび可逆的なスタイル転送タスクにおいて、コンテンツのリーク問題を緩和することに成功した。
論文 参考訳(メタデータ) (2023-07-01T05:00:19Z) - StyO: Stylize Your Face in Only One-shot [11.715601955568536]
本稿では,1つの芸術的対象を持つ顔のスタイリングに焦点を当てた。
このタスクの既存の作業は、ジオメトリの変化を達成しながら、ソース内容の保持に失敗することが多い。
上記の問題を解決するために,新しいStyOモデル,すなわち1ショットで顔をスタイリングする。
論文 参考訳(メタデータ) (2023-03-06T15:48:33Z) - Zero-shot Image-to-Image Translation [57.46189236379433]
手動のプロンプトを使わずに元の画像を保存できる画像から画像への変換法であるpix2pix-zeroを提案する。
本稿では,拡散過程全体を通して入力画像の相互注意マップを維持することを目的とした,相互注意誘導を提案する。
本手法では,これらの編集のための追加のトレーニングを必要とせず,既存のテキスト・画像拡散モデルを直接使用することができる。
論文 参考訳(メタデータ) (2023-02-06T18:59:51Z) - Multi-Modality Image Inpainting using Generative Adversarial Networks [0.0]
本稿では,画像インパインティングタスクとマルチモーダルな画像から画像への変換を併用する問題に対処するモデルを提案する。
モデルは、定性的かつ定量的な結果とともに、夜間のイメージ翻訳と塗装の組み合わせで評価される。
論文 参考訳(メタデータ) (2022-06-18T14:06:14Z) - In&Out : Diverse Image Outpainting via GAN Inversion [89.84841983778672]
image outpaintingは、利用可能なコンテンツを超えて、入力画像の意味的に一貫した拡張を求める。
本研究では、生成的対向ネットワークの反転の観点から問題を定式化する。
私達の発電機はイメージの彼らの共同潜入コードそして個々の位置で調節されるマイクロ パッチをレンダリングします。
論文 参考訳(メタデータ) (2021-04-01T17:59:10Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Two-Stream Appearance Transfer Network for Person Image Generation [16.681839931864886]
画像生成や翻訳に広く用いられているGAN(Generative Adversarial Network)は、空間的局所的および翻訳同変演算子に依存している。
本稿では,この課題に対処するために,新しい2ストリームの外観伝達ネットワーク(2s-ATN)を提案する。
ソースストリームとターゲットストリームで構成される多段階アーキテクチャである。各ステージは外観伝達モジュールと複数の2ストリーム特徴融合モジュールを備える。
論文 参考訳(メタデータ) (2020-11-09T04:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。