Improving Probabilistic Diffusion Models With Optimal Covariance Matching
- URL: http://arxiv.org/abs/2406.10808v2
- Date: Sun, 13 Oct 2024 07:08:37 GMT
- Title: Improving Probabilistic Diffusion Models With Optimal Covariance Matching
- Authors: Zijing Ou, Mingtian Zhang, Andi Zhang, Tim Z. Xiao, Yingzhen Li, David Barber,
- Abstract summary: We introduce a novel method for learning the diagonal covariances.
We show how our method can substantially enhance the sampling efficiency, recall rate and likelihood of both diffusion models and latent diffusion models.
- Score: 27.2761325416843
- License:
- Abstract: The probabilistic diffusion model has become highly effective across various domains. Typically, sampling from a diffusion model involves using a denoising distribution characterized by a Gaussian with a learned mean and either fixed or learned covariances. In this paper, we leverage the recently proposed covariance moment matching technique and introduce a novel method for learning the diagonal covariances. Unlike traditional data-driven covariance approximation approaches, our method involves directly regressing the optimal analytic covariance using a new, unbiased objective named Optimal Covariance Matching (OCM). This approach can significantly reduce the approximation error in covariance prediction. We demonstrate how our method can substantially enhance the sampling efficiency, recall rate and likelihood of both diffusion models and latent diffusion models.
Related papers
- New algorithms for sampling and diffusion models [0.0]
We introduce a novel sampling method for known distributions and a new algorithm for diffusion generative models with unknown distributions.
Our approach is inspired by the concept of the reverse diffusion process, widely adopted in diffusion generative models.
arXiv Detail & Related papers (2024-06-14T02:30:04Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Error Bounds for Flow Matching Methods [38.9898500163582]
Flow matching methods approximate a flow between two arbitrary probability distributions.
We present error bounds for the flow matching procedure using fully deterministic sampling, assuming an $L2$ bound on the approximation error and a certain regularity on the data distributions.
arXiv Detail & Related papers (2023-05-26T12:13:53Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Equivariance Discovery by Learned Parameter-Sharing [153.41877129746223]
We study how to discover interpretable equivariances from data.
Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes.
Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme.
arXiv Detail & Related papers (2022-04-07T17:59:19Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
Varying domains and biased datasets can lead to differences between the training and the target distributions.
Current approaches for alleviating this often rely on estimating the ratio of training and target probability density functions.
arXiv Detail & Related papers (2020-10-23T22:13:00Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
We consider the problem of jointly estimating multiple related zero-mean Gaussian distributions from data.
We propose a distributed method that scales to large problems, and illustrate the efficacy of the method with examples in finance, radar signal processing, and weather forecasting.
arXiv Detail & Related papers (2020-05-04T18:00:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.