論文の概要: Debiasing Machine Unlearning with Counterfactual Examples
- arxiv url: http://arxiv.org/abs/2404.15760v1
- Date: Wed, 24 Apr 2024 09:33:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 19:40:12.073234
- Title: Debiasing Machine Unlearning with Counterfactual Examples
- Title(参考訳): 逆実例によるデバイアスマシンの非学習
- Authors: Ziheng Chen, Jia Wang, Jun Zhuang, Abbavaram Gowtham Reddy, Fabrizio Silvestri, Jin Huang, Kaushiki Nag, Kun Kuang, Xin Ning, Gabriele Tolomei,
- Abstract要約: 我々は、未学習プロセスの背後にある因果要因を分析し、データレベルとアルゴリズムレベルでバイアスを軽減する。
バイアスのあるデータセットによって、忘れるべき知識が消去される、介入に基づくアプローチを導入する。
本手法は,評価指標に基づく既存の機械学習ベースラインよりも優れる。
- 参考スコア(独自算出の注目度): 31.931056076782202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The right to be forgotten (RTBF) seeks to safeguard individuals from the enduring effects of their historical actions by implementing machine-learning techniques. These techniques facilitate the deletion of previously acquired knowledge without requiring extensive model retraining. However, they often overlook a critical issue: unlearning processes bias. This bias emerges from two main sources: (1) data-level bias, characterized by uneven data removal, and (2) algorithm-level bias, which leads to the contamination of the remaining dataset, thereby degrading model accuracy. In this work, we analyze the causal factors behind the unlearning process and mitigate biases at both data and algorithmic levels. Typically, we introduce an intervention-based approach, where knowledge to forget is erased with a debiased dataset. Besides, we guide the forgetting procedure by leveraging counterfactual examples, as they maintain semantic data consistency without hurting performance on the remaining dataset. Experimental results demonstrate that our method outperforms existing machine unlearning baselines on evaluation metrics.
- Abstract(参考訳): 忘れられる権利(RTBF)は、機械学習技術を実装することによって、過去の行動の持続的な影響から個人を保護しようとするものである。
これらの技術は、広範囲なモデルの再訓練を必要とせずに、以前取得した知識の削除を促進する。
しかし、彼らはしばしば重要な問題を見落としている。
このバイアスは,(1)不均一なデータ除去を特徴とするデータレベルのバイアス,(2)残りのデータセットを汚染し,モデル精度を低下させるアルゴリズムレベルのバイアスの2つから生じる。
本研究では、未学習プロセスの背後にある因果要因を分析し、データレベルとアルゴリズムレベルでバイアスを軽減する。
通常、我々は介入に基づくアプローチを導入し、脱バイアスデータセットで忘れるべき知識を消去する。
さらに,他のデータセットのパフォーマンスを損なうことなくセマンティックデータの一貫性を維持するため,逆実例を活用することで,忘れる手順を導出する。
実験の結果,提案手法は,評価指標に基づく既存の機械学習ベースラインよりも優れていた。
関連論文リスト
- Model Debiasing by Learnable Data Augmentation [19.625915578646758]
本稿では,トレーニングを正規化可能なデータ拡張戦略を備えた,新しい2段階学習パイプラインを提案する。
合成および現実的なバイアス付きデータセットの実験は、最先端の分類精度を示し、競合する手法より優れている。
論文 参考訳(メタデータ) (2024-08-09T09:19:59Z) - Data augmentation and explainability for bias discovery and mitigation
in deep learning [0.0]
この論文は、ディープニューラルネットワークにおけるバイアスの影響を調査し、モデルパフォーマンスへの影響を減らす方法を提案する。
最初の部分は、データやモデルのバイアスやエラーの潜在的な原因を分類し、記述することから始まり、特に機械学習パイプラインのバイアスに焦点を当てている。
次の章では、予測と制御を正当化し、モデルを改善する手段として、説明可能なAIの分類と方法について概説する。
論文 参考訳(メタデータ) (2023-08-18T11:02:27Z) - Fair Machine Unlearning: Data Removal while Mitigating Disparities [5.724350004671127]
忘れられる権利は、EUのジェネラル・レギュレーション(ジェネラル・レギュレーション)によって概説される基本原則である。
残ったデータに再トレーニングすることで、ナイーティブに「期待」を達成できる。
学習」は、フェアネスのような現実世界のアプリケーションにとって重要な他の特性に影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-27T10:26:46Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
トレーニング前にデータセットから削除すべき特定の種類のバイアスを記述したインスタンスを検出できるデータ前処理手法を提案する。
特に、類似した特徴を持つインスタンスが存在するが、保護属性の変動に起因するラベルが異なる問題設定では、固有のバイアスがデータセット内で引き起こされる、と主張する。
論文 参考訳(メタデータ) (2022-10-24T13:04:07Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
データセットバイアスを緩和する既存のテクニックは、バイアス付きモデルを利用してバイアス付きインスタンスを識別することが多い。
これらの偏りのあるインスタンスの役割は、メインモデルのトレーニング中に減少し、アウト・オブ・ディストリビューションデータに対するロバスト性を高める。
本稿では,この仮定が一般には成り立たないことを示す。
論文 参考訳(メタデータ) (2021-09-01T10:25:46Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
本稿では、語彙的データセットバイアスに対するモデル強化のための、データレベルとモデルレベルのデバイアス法の両方について検討する。
まず、データ拡張と拡張によってデータセットをデバイアスするが、この方法でモデルバイアスを完全に除去することはできないことを示す。
第2のアプローチでは、バーオブワードのサブモデルを使用して、バイアスを悪用する可能性のある機能をキャプチャし、元のモデルがこれらのバイアス付き機能を学ぶのを防ぐ。
論文 参考訳(メタデータ) (2020-05-10T17:56:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。