Measurement of enhanced spin-orbit coupling strength for donor-bound electron spins in silicon
- URL: http://arxiv.org/abs/2404.15762v1
- Date: Wed, 24 Apr 2024 09:34:56 GMT
- Title: Measurement of enhanced spin-orbit coupling strength for donor-bound electron spins in silicon
- Authors: Radha Krishnan, Beng Yee Gan, Yu-Ling Hsueh, A. M. Saffat-Ee Huq, Jonathan Kenny, Rajib Rahman, Teck Seng Koh, Michelle Y. Simmons, Bent Weber,
- Abstract summary: We show that the strength of the spin-orbit coupling can be locally enhanced by more than two orders of magnitude in the manybody wave functions of multi-donor quantum dots compared to a single donor.
Our findings may provide a pathway towards all-electrical control of donor-bound spins in silicon using electric dipole spin resonance (EDSR)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While traditionally considered a deleterious effect in quantum dot spin qubits, the spin-orbit interaction is recently being revisited as it allows for rapid coherent control by on-chip AC electric fields. For electrons in bulk silicon, SOC is intrinsically weak, however, it can be enhanced at surfaces and interfaces, or through atomic placement. Here we show that the strength of the spin-orbit coupling can be locally enhanced by more than two orders of magnitude in the manybody wave functions of multi-donor quantum dots compared to a single donor, reaching strengths so far only reported for holes or two-donor system with certain symmetry. Our findings may provide a pathway towards all-electrical control of donor-bound spins in silicon using electric dipole spin resonance (EDSR).
Related papers
- Electrical readout of spins in the absence of spin blockade [0.7528462379265576]
In semiconductor nanostructures, spin blockade (SB) is the most scalable mechanism for electrical spin readout.
We present a method, based on the dependence of the two-spin system polarizability on energy detuning, to perform spin state readout even when SB lifting mechanisms are dominant.
arXiv Detail & Related papers (2024-03-19T16:36:31Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Multielectron dots provide faster Rabi oscillations when the core
electrons are strongly confined [0.0]
We study one- and three-electron quantum dots in silicon/silicon-germanium heterostructures.
Our calculations show that anharmonicity of the confinement potential plays an important role.
These findings have important implications for the design of multielectron Si/SiGe quantum dot qubits.
arXiv Detail & Related papers (2023-03-06T08:11:16Z) - Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot [19.029069649697824]
Hole spins confined in semiconductor quantum dot systems have gained considerable interest for their strong spin-orbit interactions (SOIs)
Here we experimentally demonstrate a tunable SOI in a double quantum dot in a Germanium (Ge) hut wire (HW)
This tunability of the SOI could pave the way toward the realization of high-fidelity qubits in Ge HW systems.
arXiv Detail & Related papers (2022-06-08T02:44:31Z) - Non-reciprocal Pauli Spin Blockade in a Silicon Double Quantum Dot [2.1244966990202903]
We present an experimental observation of a new, highly prevalent PSB-lifting mechanism in a silicon double quantum dot.
We find the mechanism to be energy-level selective and non-reciprocal for neighbouring charge configurations.
arXiv Detail & Related papers (2021-10-19T10:54:27Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.