Contrasting exchange-field and spin-transfer torque driving mechanisms in all-electric electron spin resonance
- URL: http://arxiv.org/abs/2503.24046v1
- Date: Mon, 31 Mar 2025 13:10:22 GMT
- Title: Contrasting exchange-field and spin-transfer torque driving mechanisms in all-electric electron spin resonance
- Authors: Jose Reina-Galvez, Matyas Nachtigall, Nicolas Lorente, Jan Martinek, Christoph Wolf,
- Abstract summary: We study the origin of the driving field using a single orbital Anderson impurity, connected to polarized leads and biased by a voltage modulated on resonance with a spin transition.<n>We identify two distinct driving mechanisms. Below the charging thresholds of the impurity, electron spin resonance is dominated by a magnetically exchange-driven mechanism or field-like torque.<n>The electron spin resonance signals and spin dynamics vary significantly depending on which driving mechanism dominates, highlighting the potential for optimizing quantum-coherent control in electrically driven quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the coherent properties of electron spins driven by electric fields is crucial for their potential application in quantum-coherent nanoscience. In this work, we address two distinct driving mechanisms in electric-field driven electron-spin resonance as implemented in scanning tunneling spectroscopy. We study the origin of the driving field using a single orbital Anderson impurity, connected to polarized leads and biased by a voltage modulated on resonance with a spin transition. By mapping the quantum master equation into a system of equations for the impurity spin, we identify two distinct driving mechanisms. Below the charging thresholds of the impurity, electron spin resonance is dominated by a magnetically exchange-driven mechanism or field-like torque. Conversely, above the charging threshold spin-transfer torque caused by the spin-polarized current through the impurity drives the spin transition. Only the first mechanism enables coherent quantum spin control, while the second one leads to fast decoherence and spin accumulation towards a non-equilibrium steady-state. The electron spin resonance signals and spin dynamics vary significantly depending on which driving mechanism dominates, highlighting the potential for optimizing quantum-coherent control in electrically driven quantum systems.
Related papers
- Engineered Chirality of One-Dimensional Nanowires [4.742859282764092]
The origin and function of chirality in DNA, proteins, and other building blocks of life represent a central question in biology.<n>We use reconfigurable nanoscale control over conductivity at the LaAlO$_3$/SrTiO$_3$ interface to create chiral electron potentials that explicitly lack mirror symmetry.<n>We interpret resonances as arising from an engineered axial spin-orbit interaction within the chiral region.
arXiv Detail & Related papers (2025-02-08T19:14:00Z) - Spin torque driven electron paramagnetic resonance of a single spin in a pentacene molecule [0.0]
We demonstrate coherent driving of a single spin by a radiofrequency spin-polarized current.
With the excitation of electron paramagnetic resonance, we established dynamic control of single spins by spin torque.
arXiv Detail & Related papers (2024-06-25T13:03:43Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei [0.0]
We study the interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment.
We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects.
arXiv Detail & Related papers (2020-12-14T03:00:18Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z) - Generalized spin-orbit interaction in two-dimensional electron systems [0.0]
Dirac quantum field theory describes electrons and positrons as elementary excitations of the spinor field.
The dependence of the spin-orbit interaction on the spin states in quasi-two-dimensional systems of electrons localized in a quantum well is analyzed.
arXiv Detail & Related papers (2020-03-23T07:18:52Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.