論文の概要: 3D Face Morphing Attack Generation using Non-Rigid Registration
- arxiv url: http://arxiv.org/abs/2404.15765v1
- Date: Wed, 24 Apr 2024 09:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 19:40:12.067579
- Title: 3D Face Morphing Attack Generation using Non-Rigid Registration
- Title(参考訳): 非デジタルレジストレーションによる3次元顔モフィング攻撃生成
- Authors: Jag Mohan Singh, Raghavendra Ramachandra,
- Abstract要約: 顔認識システムは顔形態攻撃に弱い。
そこで本研究では、2つのボナファイド点雲から3次元顔形態を生成する新しい方法を提案する。
- 参考スコア(独自算出の注目度): 3.2922238790240836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face Recognition Systems (FRS) are widely used in commercial environments, such as e-commerce and e-banking, owing to their high accuracy in real-world conditions. However, these systems are vulnerable to facial morphing attacks, which are generated by blending face color images of different subjects. This paper presents a new method for generating 3D face morphs from two bona fide point clouds. The proposed method first selects bona fide point clouds with neutral expressions. The two input point clouds were then registered using a Bayesian Coherent Point Drift (BCPD) without optimization, and the geometry and color of the registered point clouds were averaged to generate a face morphing point cloud. The proposed method generates 388 face-morphing point clouds from 200 bona fide subjects. The effectiveness of the method was demonstrated through extensive vulnerability experiments, achieving a Generalized Morphing Attack Potential (G-MAP) of 97.93%, which is superior to the existing state-of-the-art (SOTA) with a G-MAP of 81.61%.
- Abstract(参考訳): 顔認識システム(FRS)は、現実の環境での精度の高さから、電子商取引や電子バンキングなどの商業環境で広く使われている。
しかし、これらのシステムは、異なる被験者の顔色画像が混ざり合った顔形態形成攻撃に弱い。
そこで本研究では、2つのボナファイド点雲から3次元顔形態を生成する新しい方法を提案する。
提案手法はまず中性表現を用いたボナファイド点雲を選択する。
2つの入力点雲を最適化せずにベイジアンコヒーレントポイントドリフト (BCPD) を用いて登録し, 登録点雲の形状と色を平均化し, 顔変形点雲を生成する。
提案手法は,200人のボナファイド被験者から388個の顔変形点雲を生成する。
この手法の有効性は、G-MAPが81.61%の既存のSOTAよりも優れている97.93%の一般モルフィング攻撃可能性(G-MAP)を達成し、広範囲にわたる脆弱性実験によって実証された。
関連論文リスト
- VoxAtnNet: A 3D Point Clouds Convolutional Neural Network for Generalizable Face Presentation Attack Detection [2.6118211807973157]
顔バイオメトリックシステムはプレゼンテーションアタック(PA)に対して脆弱である
本稿では,スマートフォンの前面カメラを用いて捉えた3次元点雲に基づくプレゼンテーション攻撃検出(PAD)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-19T07:30:36Z) - Optimal-Landmark-Guided Image Blending for Face Morphing Attacks [8.024953195407502]
本稿では,最適なランドマーク誘導画像ブレンディングを用いた顔形態形成攻撃を行うための新しい手法を提案する。
提案手法は, ランドマークの最適化とグラフ畳み込みネットワーク(GCN)によるランドマークと外観特徴の組み合わせにより, 従来のアプローチの限界を克服する。
論文 参考訳(メタデータ) (2024-01-30T03:45:06Z) - Fast Training of Diffusion Transformer with Extreme Masking for 3D Point
Clouds Generation [64.99362684909914]
我々は,効率的な3次元点雲生成に適したマスク付き拡散変圧器であるFastDiT-3Dを提案する。
また,新しいボクセル対応マスキング手法を提案し,ボクセル化点雲から背景・地上情報を適応的に集約する。
本手法は, マスキング比が99%近い最先端性能を実現する。
論文 参考訳(メタデータ) (2023-12-12T12:50:33Z) - Take-A-Photo: 3D-to-2D Generative Pre-training of Point Cloud Models [97.58685709663287]
生成事前学習は、2次元視覚における基本モデルの性能を高めることができる。
3Dビジョンでは、トランスフォーマーベースのバックボーンの過度な信頼性と、点雲の秩序のない性質により、生成前のトレーニングのさらなる発展が制限されている。
本稿では,任意の点クラウドモデルに適用可能な3D-to-2D生成事前学習法を提案する。
論文 参考訳(メタデータ) (2023-07-27T16:07:03Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
分割・分散アプローチを用いた新しい3dポイントクラウド生成フレームワークを考案する。
すべてのパッチジェネレータは学習可能な事前情報に基づいており、幾何学的プリミティブの情報を取得することを目的としている。
最も人気のあるポイントクラウドデータセットであるShapeNetのさまざまなオブジェクトカテゴリに関する実験結果は、提案したパッチワイドポイントクラウド生成の有効性を示している。
論文 参考訳(メタデータ) (2023-07-22T11:10:39Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
顔変形に対するスタイルGANベースのアプローチが主要な技術である。
本稿では,顔の変形に対する変換器ベースの代替手段を提案し,その利点をStyleGANベースの方法と比較した。
論文 参考訳(メタデータ) (2023-02-18T19:09:11Z) - 3D Face Morphing Attacks: Generation, Vulnerability and Detection [3.700129710233692]
顔認識システムはモルヒネ攻撃に弱いことが判明した。
本研究は,3次元の顔変形攻撃を発生させる新しい方向を示す。
論文 参考訳(メタデータ) (2022-01-10T16:53:39Z) - IF-Defense: 3D Adversarial Point Cloud Defense via Implicit Function
based Restoration [68.88711148515682]
ディープニューラルネットワークは、様々な3D敵攻撃に対して脆弱である。
本稿では,幾何学的制約と分布的制約を伴って入力点の座標を直接最適化するIF-Defenseフレームワークを提案する。
この結果から,IF-Defense は PointNet, PointNet++, DGCNN, PointConv, RS-CNN に対する既存の3次元攻撃に対して,最先端の防御性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-10-11T15:36:40Z) - Can GAN Generated Morphs Threaten Face Recognition Systems Equally as
Landmark Based Morphs? -- Vulnerability and Detection [22.220940043294334]
本稿では,新たなGAN(Generative Adversarial Network)-StyleGANを用いた顔形態生成フレームワークを提案する。
2500枚の顔画像が新たに作成された形態データセットでは、この研究に批判的な疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2020-07-07T16:52:56Z) - ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds [78.25501874120489]
我々は、ポイントクラウドオートエンコーダの学習した潜在空間を活用することで、形状認識型3Dポイントクラウド攻撃を開発する。
以前のものとは違って、結果として生じる3D点の雲は、元の雲に近い状態での3D点の雲の形状の変化を反映している。
論文 参考訳(メタデータ) (2020-05-24T00:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。