論文の概要: KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction
- arxiv url: http://arxiv.org/abs/2404.15923v1
- Date: Wed, 24 Apr 2024 15:27:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:51:25.124164
- Title: KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction
- Title(参考訳): KGValidator:知識グラフ構築の自動検証フレームワーク
- Authors: Jack Boylan, Shashank Mangla, Dominic Thorn, Demian Gholipour Ghalandari, Parsa Ghaffari, Chris Hokamp,
- Abstract要約: 生成モデルを用いて知識グラフを検証する場合に,一貫性と検証のためのフレームワークを導入する。
この設計は適応と拡張が容易で、どんなグラフ構造化データでも検証することができる。
- 参考スコア(独自算出の注目度): 2.9526207670430384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the use of Large Language Models (LLMs) for automatic evaluation of knowledge graph (KG) completion models. Historically, validating information in KGs has been a challenging task, requiring large-scale human annotation at prohibitive cost. With the emergence of general-purpose generative AI and LLMs, it is now plausible that human-in-the-loop validation could be replaced by a generative agent. We introduce a framework for consistency and validation when using generative models to validate knowledge graphs. Our framework is based upon recent open-source developments for structural and semantic validation of LLM outputs, and upon flexible approaches to fact checking and verification, supported by the capacity to reference external knowledge sources of any kind. The design is easy to adapt and extend, and can be used to verify any kind of graph-structured data through a combination of model-intrinsic knowledge, user-supplied context, and agents capable of external knowledge retrieval.
- Abstract(参考訳): 本研究では,知識グラフ(KG)補完モデルの自動評価にLarge Language Models (LLMs) を用いることを検討した。
歴史的に、KGsで情報を検証することは難しい課題であり、大規模な人間のアノテーションを禁止コストで要求してきた。
汎用的な生成AIとLLMの出現により、人間のループ検証が生成エージェントに置き換えられる可能性が高まった。
生成モデルを用いて知識グラフを検証する場合に,一貫性と検証のためのフレームワークを導入する。
我々のフレームワークは、最近のLLM出力の構造的・意味的検証のためのオープンソース開発と、あらゆる種類の外部知識ソースを参照する能力によって支援される事実確認と検証への柔軟なアプローチに基づいている。
この設計は適応と拡張が容易であり、モデル固有の知識、ユーザが提供するコンテキスト、外部知識の検索が可能なエージェントを組み合わせることで、どんなグラフ構造化データでも検証することができる。
関連論文リスト
- Quantitative Assurance and Synthesis of Controllers from Activity
Diagrams [4.419843514606336]
確率的モデル検査は、定性的および定量的な性質を自動検証するために広く用いられている形式的検証手法である。
これにより、必要な知識を持っていない研究者やエンジニアにはアクセスできない。
本稿では,確率時間の新しいプロファイル,品質アノテーション,3つのマルコフモデルにおけるADの意味論的解釈,アクティビティ図からPRISM言語への変換ルールのセットなど,ADの総合的な検証フレームワークを提案する。
最も重要なことは、モデルをベースとした手法を用いて、完全自動検証のための変換アルゴリズムを開発し、QASCADと呼ばれるツールで実装したことです。
論文 参考訳(メタデータ) (2024-02-29T22:40:39Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
画像の領域と対応するセマンティック埋め込みとをマッチングする多モード集中型ZSLフレームワークを提案する。
我々は、大規模な実世界のデータに基づいて、広範囲な実験を行い、そのモデルを評価する。
論文 参考訳(メタデータ) (2023-06-14T13:07:48Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
本論文は,知識グラフの自動構築と完成の技術をテキストから改善することを目的としている。
この文脈では、新しいパラダイムの1つは、言語モデルがプロンプトとともにそのまま使われる、コンテキスト内学習である。
論文 参考訳(メタデータ) (2023-05-15T17:10:19Z) - Enhancing Knowledge Graph Construction Using Large Language Models [0.0]
本稿では,ChatGPTのような基礎LPMの現在の進歩を,REBELのような特定の事前学習モデルと比較し,結合実体と関係抽出について述べる。
生テキストから知識グラフを自動生成するためのパイプラインを作成し,高度なLCMモデルを用いることで,非構造化テキストからこれらのグラフを作成するプロセスの精度が向上することを示した。
論文 参考訳(メタデータ) (2023-05-08T12:53:06Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
我々は、異なるエンティティと関係型を区別することを学ぶ新しいエンティティ/リレーション埋め込み層を導入する。
知識グラフから抽出したトリプルを用いて、この追加埋め込み層を用いて言語モデルをさらに事前学習し、続いて標準微調整フェーズにより、ベンチマークデータセット上のリンク予測タスクに対して、新しい最先端のパフォーマンスが設定されることを示す。
論文 参考訳(メタデータ) (2022-11-04T20:38:12Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
本稿では,事前学習したLMから任意の関係を持つ大規模KGを抽出する手法を提案する。
関係定義の最小限の入力により、アプローチは膨大な実体対空間を効率的に探索し、多様な正確な知識を抽出する。
我々は、異なるLMから400以上の新しい関係を持つKGを収穫するためのアプローチを展開している。
論文 参考訳(メタデータ) (2022-06-28T19:46:29Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。