Complexity Measure Diagnostics of Ergodic to Many-Body Localization Transition
- URL: http://arxiv.org/abs/2404.15940v2
- Date: Wed, 13 Nov 2024 15:54:21 GMT
- Title: Complexity Measure Diagnostics of Ergodic to Many-Body Localization Transition
- Authors: Khen Cohen, Yaron Oz, De-liang Zhong,
- Abstract summary: We introduce new diagnostics of the transition between the ergodic and many-body localization phases.
We use these complexity measures to analyze the power-law random banded matrix model.
- Score: 0.8192907805418583
- License:
- Abstract: We introduce new diagnostics of the transition between the ergodic and many-body localization phases, which are based on complexity measures defined via the probability distribution function of the Lanczos coefficients of the tri-diagonalized Hamiltonian. We use these complexity measures to analyze the power-law random banded matrix model as a function of the correlation strength and show that the moments and the entropy of the distribution diagnose the ergodic to many-body transition, as well as the distinctive feature of the phases concerning the memory of the initial conditions.
Related papers
- State Dependent Spread Complexity Dynamics in Many-Body Localization Transition [0.0]
We characterize the Many-Body Localization (MBL) phase transition using the dynamics of spread complexity and inverse participation ratio in the Krylov space.
Our work sheds light on the efficacy of Krylov space dynamics in understanding phase transitions in quantum many-body systems.
arXiv Detail & Related papers (2024-09-03T18:00:11Z) - Complexity in two-point measurement schemes [0.0]
We show that the probability distribution associated with the change of an observable in a two-point measurement protocol with a perturbation can be written as an auto-correlation function.
We probe how the evolved state spreads in the corresponding conjugate space.
We show that the complexity saturates for large values of the parameter only when the pre-quench Hamiltonian is chaotic.
arXiv Detail & Related papers (2023-11-14T04:00:31Z) - Localization, fractality, and ergodicity in a monitored qubit [0.5892638927736115]
We study the statistical properties of a single two-level system (qubit) subject to repetitive ancilla-based measurements.
This setup is a fundamental minimal model for exploring the interplay between the unitary dynamics of the system and the nonunitaryity introduced by quantum measurements.
arXiv Detail & Related papers (2023-10-03T12:10:30Z) - Perturbative Analysis of Quasi-periodic Patterning of Transmon Quantum Computers: Enhancement of Many-Body Localization [0.0]
We show that quasiperiodic patterning of parameters is more effective than disorder for achieving localization.
In order to study the localizing properties of our new Hamiltonian for large, experimentally relevant system sizes, we use two complementary perturbation-theory schemes.
arXiv Detail & Related papers (2022-12-07T17:41:40Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Localization transition induced by programmable disorder [0.24629531282150877]
Many-body localization occurs on a spin-1/2 transverse-field Ising model.
We observe a transition from an ergodic phase to a non-thermal phase for individual energy eigenstates.
We realize the time-independent disordered Ising Hamiltonian experimentally on a D-Wave 2000Q programmable quantum annealer.
arXiv Detail & Related papers (2021-08-15T15:37:32Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.