Correcting and extending Trotterized quantum many-body dynamics
- URL: http://arxiv.org/abs/2502.13784v1
- Date: Wed, 19 Feb 2025 14:50:12 GMT
- Title: Correcting and extending Trotterized quantum many-body dynamics
- Authors: Gian Gentinetta, Friederike Metz, Giuseppe Carleo,
- Abstract summary: We develop a hybrid ansatz that combines the strengths of quantum and classical methods.
We show how this hybrid ansatz can avoid SWAP gates in the quantum circuit.
We also show how it can extend the system size while keeping the number of qubits on the quantum device constant.
- Score: 0.0
- License:
- Abstract: A complex but important challenge in understanding quantum mechanical phenomena is the simulation of quantum many-body dynamics. Although quantum computers offer significant potential to accelerate these simulations, their practical application is currently limited by noise and restricted scalability. In this work, we address these problems by proposing a hybrid ansatz combining the strengths of quantum and classical computational methods. Using Trotterization, we evolve an initial state on the quantum computer according to a simplified Hamiltonian, focusing on terms that are difficult to simulate classically. A classical model then corrects the simulation by including the terms omitted in the quantum circuit. While the classical ansatz is optimized during the time evolution, the quantum circuit has no variational parameters. Derivatives can thus be calculated purely classically, avoiding challenges arising in the optimization of parameterized quantum circuits. We demonstrate three applications of this hybrid method. First, our approach allows us to avoid SWAP gates in the quantum circuit by restricting the quantum part of the ansatz to hardware-efficient terms of the Hamiltonian. Second, we can mitigate errors arising from the Trotterization of the time evolution unitary. Finally, we can extend the system size while keeping the number of qubits on the quantum device constant by including additional degrees of freedom in the classical ansatz.
Related papers
- Improved Quantum Computation using Operator Backpropagation [5.066470263702309]
We show a framework that integrates classical simulations with quantum hardware to improve the computation of an observable's expectation value.
In this framework, a quantum circuit is partitioned into two subcircuits: one that describes the backpropagated Heisenberg evolution of an observable, executed on a classical computer, and the other is a Schr"odinger evolution run on quantum processors.
We demonstrate the effectiveness of this method on a Hamiltonian simulation problem, achieving more accurate expectation value estimates compared to using quantum hardware alone.
arXiv Detail & Related papers (2025-02-04T00:03:07Z) - Universal quantum computation using quantum annealing with the
transverse-field Ising Hamiltonian [0.0]
We present a practical method for implementing universal quantum computation using the transverse-field Ising Hamiltonian.
Our proposal is compatible with D-Wave devices, opening up possibilities for realizing large-scale gate-based quantum computers.
arXiv Detail & Related papers (2024-02-29T12:47:29Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Reinforcement Learning for Digital Quantum Simulation [0.0]
We introduce a reinforcement learning algorithm to build optimized quantum circuits for digital quantum simulation.
We consistently obtain quantum circuits that reproduce physical observables with as little as three entangling gates for long times and large system sizes.
arXiv Detail & Related papers (2020-06-29T18:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.