論文の概要: Improving Dictionary Learning with Gated Sparse Autoencoders
- arxiv url: http://arxiv.org/abs/2404.16014v2
- Date: Tue, 30 Apr 2024 17:54:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:06:54.057248
- Title: Improving Dictionary Learning with Gated Sparse Autoencoders
- Title(参考訳): Gated Sparse Autoencodersによる辞書学習の改善
- Authors: Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János Kramár, Rohin Shah, Neel Nanda,
- Abstract要約: Gated Sparse Autoencoder (Gated SAE)は、言語モデル(LM)アクティベーションにおける解釈可能な特徴を教師なしで発見する技術である。
SAEでは、スパーシリティを促進するために使われるL1ペナルティは、収縮のような望ましくないバイアスを多く導入する。
最大7BパラメータのLM上でSAEを訓練する際には、Gated SAEは収縮を解消し、同等の再現性を達成するのに半分の燃焼特性を必要とする。
- 参考スコア(独自算出の注目度): 8.3037652157611
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has found that sparse autoencoders (SAEs) are an effective technique for unsupervised discovery of interpretable features in language models' (LMs) activations, by finding sparse, linear reconstructions of LM activations. We introduce the Gated Sparse Autoencoder (Gated SAE), which achieves a Pareto improvement over training with prevailing methods. In SAEs, the L1 penalty used to encourage sparsity introduces many undesirable biases, such as shrinkage -- systematic underestimation of feature activations. The key insight of Gated SAEs is to separate the functionality of (a) determining which directions to use and (b) estimating the magnitudes of those directions: this enables us to apply the L1 penalty only to the former, limiting the scope of undesirable side effects. Through training SAEs on LMs of up to 7B parameters we find that, in typical hyper-parameter ranges, Gated SAEs solve shrinkage, are similarly interpretable, and require half as many firing features to achieve comparable reconstruction fidelity.
- Abstract(参考訳): 最近の研究で、スパースオートエンコーダ(SAE)は、言語モデル(LM)アクティベーションにおける解釈可能な特徴の教師なし発見に有効な手法であることがわかった。
Gated Sparse Autoencoder (Gated SAE) を導入する。
SAEでは、スパーシリティを促進するために使われるL1ペナルティは、縮小など多くの望ましくないバイアスをもたらす。
Gated SAEの重要な洞察は、機能の分離である。
a) どの方向を使うか、または使うかを決定すること
b) これらの方向の大きさを推定することにより、L1ペナルティを前者のみに適用することができ、望ましくない副作用の範囲を制限することができる。
最大7BパラメータのLM上でのSAEのトレーニングにより、通常の超パラメータ範囲では、Gated SAEは収縮を解消し、同様に解釈可能であり、同等の再現忠実性を達成するのに半分の発射特性を必要とすることがわかった。
関連論文リスト
- PEAR: Position-Embedding-Agnostic Attention Re-weighting Enhances Retrieval-Augmented Generation with Zero Inference Overhead [24.611413814466978]
検索拡張生成(RAG)により強化された大言語モデル(LLM)は、Web検索のための新しいパラダイムを導入した。
既存のコンテキスト認識を強化する方法は、しばしば非効率であり、推論中に時間やメモリオーバーヘッドが発生する。
そこで我々は,LLMの文脈認識をゼロ推論オーバーヘッドで向上する位置埋め込み非依存再重み付け(PEAR)を提案する。
論文 参考訳(メタデータ) (2024-09-29T15:40:54Z) - Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders [4.4110204540437365]
本研究では, Gemma 2 9Bアクティベーションにおいて, 所定の空間レベルにおいて, 最先端の再現忠実性を実現するJumpReLU SAEを紹介する。
この改善は、手動および自動解釈可能性研究による解釈可能性のコストを伴わないことを示す。
論文 参考訳(メタデータ) (2024-07-19T16:07:19Z) - Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing [63.20133320524577]
大言語モデル(LLM)は、ジェネラリストアシスタントとして大きな可能性を示している。
これらのモデルは、非毒性や脱獄の試みに対するレジリエンスなど、望ましい行動特性を示すことが重要である。
本稿では,パラメータの小さなサブセットを直接編集することで,LLMの特定の振る舞いを効果的に調節できることを観察する。
論文 参考訳(メタデータ) (2024-07-11T17:52:03Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
大規模言語モデル(LLM)は、ユーザがクエリを入力し、LLMが回答を生成する、顕著な生成AIツールになりつつある。
害と誤用を減らすため、人間のフィードバックからの強化学習のような高度な訓練技術を用いて、これらのLLMを人間の価値に合わせる努力がなされている。
近年の研究では、組込み安全ガードレールを転覆させようとする敵のジェイルブレイクの試みに対するLLMの脆弱性を強調している。
本稿では,脱獄を検知するGradient Cuffという手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T03:29:54Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generationは、大規模言語モデルからテキスト生成の信頼性を向上させる手段として考えられている。
本研究では,プロンプトに短い接頭辞を挿入しても,実際の正解から遠く離れたアウトプットを生成することを発見した。
グラディエントガイドプロンプト摂動法(Gradient Guided Prompt Perturbation)と呼ばれる新しい最適化手法を提案する。
論文 参考訳(メタデータ) (2024-02-11T12:25:41Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Meta-Learning Adversarial Bandit Algorithms [55.72892209124227]
我々は,バンディットフィードバックを用いたオンラインメタラーニングについて研究する。
我々は自己協和障壁正規化器を用いてオンラインミラー降下一般化(OMD)をチューニングすることを学ぶ。
論文 参考訳(メタデータ) (2023-07-05T13:52:10Z) - Learning Common Rationale to Improve Self-Supervised Representation for
Fine-Grained Visual Recognition Problems [61.11799513362704]
我々は、インスタンスやクラスでよく見られる差別的手がかりを識別するための、追加のスクリーニングメカニズムの学習を提案する。
SSL目標から誘導されるGradCAMを単純に利用することで、共通な有理性検出器が学習可能であることを示す。
論文 参考訳(メタデータ) (2023-03-03T02:07:40Z) - Meta-Learning Adversarial Bandits [49.094361442409785]
本研究の目的は,複数のタスクにまたがる帯域幅フィードバックを用いてオンライン学習を学習し,タスク間の平均性能を改善することである。
敵対的設定を最初に対象とするメタアルゴリズムとして,マルチアーム・バンディット(MAB)とバンディット・最適化(BLO)の2つの重要なケースに対して,特定の保証を設定するメタアルゴリズムを設計する。
我々の保証は、非正規化されたフォローザリーダーと乗法重みを組み合わせることで、オンラインで非滑らかで非Bシーケンスを学ぶのに十分であることを示すことに依存しています。
論文 参考訳(メタデータ) (2022-05-27T17:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。