論文の概要: Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing
- arxiv url: http://arxiv.org/abs/2407.08770v1
- Date: Thu, 11 Jul 2024 17:52:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 03:38:34.256322
- Title: Model Surgery: Modulating LLM's Behavior Via Simple Parameter Editing
- Title(参考訳): モデル手術 : 簡単なパラメータ編集によるLCMの挙動の制御
- Authors: Huanqian Wang, Yang Yue, Rui Lu, Jingxin Shi, Andrew Zhao, Shenzhi Wang, Shiji Song, Gao Huang,
- Abstract要約: 大言語モデル(LLM)は、ジェネラリストアシスタントとして大きな可能性を示している。
これらのモデルは、非毒性や脱獄の試みに対するレジリエンスなど、望ましい行動特性を示すことが重要である。
本稿では,パラメータの小さなサブセットを直接編集することで,LLMの特定の振る舞いを効果的に調節できることを観察する。
- 参考スコア(独自算出の注目度): 63.20133320524577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated great potential as generalist assistants, showcasing powerful task understanding and problem-solving capabilities. To deploy LLMs as AI assistants, it is crucial that these models exhibit desirable behavioral traits, such as non-toxicity and resilience against jailbreak attempts. Current methods for detoxification or preventing jailbreaking usually involve Supervised Fine-Tuning (SFT) or Reinforcement Learning from Human Feedback (RLHF), which requires finetuning billions of parameters through gradient descent with substantial computation cost. Furthermore, models modified through SFT and RLHF may deviate from the pretrained models, potentially leading to a degradation in foundational LLM capabilities. In this paper, we observe that surprisingly, directly editing a small subset of parameters can effectively modulate specific behaviors of LLMs, such as detoxification and resistance to jailbreaking. Specifically, for a behavior that we aim to avoid, we employ a linear classifier, which we term the behavior probe, to classify binary behavior labels within the hidden state space of the LLM. Using this probe, we introduce an algorithm to identify a critical subset of LLM parameters that significantly influence this targeted behavior. Then we directly edit these selected parameters by shifting them towards the behavior probe. Such a direct parameter editing method necessitates only inference-level computational resources. Experiments demonstrate that in the representative detoxification task, our approach achieves reductions of up to 90.0\% in toxicity on the RealToxicityPrompts dataset and 49.2\% on ToxiGen, while maintaining the LLM's general capabilities in areas such as common sense, question answering, and mathematics. Our code is available at https://github.com/lucywang720/model-surgery.
- Abstract(参考訳): 大きな言語モデル(LLM)は、汎用アシスタントとして大きな可能性を示し、強力なタスク理解と問題解決能力を示している。
LLMをAIアシスタントとしてデプロイするには、これらのモデルが、非毒性やジェイルブレイクの試みに対するレジリエンスなど、望ましい行動特性を示すことが不可欠である。
現在の脱毒法や脱毒防止法は、通常、スーパービジョンファインチューニング(SFT)またはヒューマンフィードバックからの強化学習(RLHF)であり、かなりの計算コストを伴う勾配勾配による数十億のパラメータを微調整する必要がある。
さらに、SFTとRLHFによって修正されたモデルは、事前訓練されたモデルから逸脱し、基礎的なLLM能力の低下につながる可能性がある。
本稿では,少数のパラメータを直接編集することで,脱毒化や脱獄耐性など,LDMの特定の挙動を効果的に調節できることを示す。
具体的には,LLMの隠れ状態空間内の2値の挙動ラベルを分類するために,振る舞いプローブと呼ばれる線形分類器を用いる。
本稿では,LLMパラメータの臨界部分集合を同定するアルゴリズムを提案する。
次に、これらのパラメータを行動プローブにシフトすることで、直接編集する。
このような直接パラメータ編集法は推論レベルの計算資源のみを必要とする。
代表的な解毒作業において,本手法は,一般感覚,質問応答,数学などの分野において LLM の一般能力を維持しつつ,RealToxicityPrompts データセットにおける毒性の 90.0 % と ToxiGen 上で 49.2 % の低減を実現していることを示す。
私たちのコードはhttps://github.com/lucywang720/model-surgery.comで利用可能です。
関連論文リスト
- Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
SASA(Self-disciplined Autoregressive Smpling)は、大規模言語モデル(LLM)の毒性低減のための軽量制御復号アルゴリズムである。
SASAは、自己回帰サンプリング戦略を調整することにより、電流出力のマージンを追跡し、有害な部分空間から世代を分離する。
Llama-3.1-Instruct (8B), Llama-2 (7B), GPT2-L model with the RealToxicityPrompts, BOLD, and AttaQ benchmarks。
論文 参考訳(メタデータ) (2024-10-04T17:45:15Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Detecting AI Flaws: Target-Driven Attacks on Internal Faults in Language Models [27.397408870544453]
大規模言語モデル(LLM)は、人工知能の急速に発展する分野において焦点となっている。
重要な懸念は、これらのモデルの事前学習コーパス内に有毒な物質が存在することであり、不適切な出力が発生する可能性がある。
本稿では,プロンプトを最適化する代わりに,ターゲット応答を直接抽出することに焦点を当てた,ターゲット駆動型攻撃パラダイムを提案する。
論文 参考訳(メタデータ) (2024-08-27T08:12:08Z) - Gradient-Mask Tuning Elevates the Upper Limits of LLM Performance [51.36243421001282]
Gradient-Mask Tuning (GMT) は、勾配情報に基づいてトレーニング中のパラメータを選択的に更新する手法である。
実験により, GMTは従来の微調整法に勝るだけでなく, LLM性能の上限も高めることを示した。
論文 参考訳(メタデータ) (2024-06-21T17:42:52Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Detoxifying Large Language Models via Knowledge Editing [57.0669577257301]
本稿では,Large Language Models (LLM) のデトックス化のための知識編集手法について検討する。
我々は、強力な攻撃プロンプトを持つ9つの安全でないカテゴリをカバーするベンチマーク、SafeEditを構築した。
いくつかの知識編集手法を用いて実験を行い、知識編集がLLMを解毒する可能性を示し、汎用性能に限られた影響を与えていることを示す。
論文 参考訳(メタデータ) (2024-03-21T15:18:30Z) - HuRef: HUman-REadable Fingerprint for Large Language Models [44.9820558213721]
HuRefは、大きな言語モデルのための人間可読指紋である。
トレーニングやモデルパラメータを公開することなく、ベースモデルを独自に識別する。
論文 参考訳(メタデータ) (2023-12-08T05:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。