論文の概要: The PRISM Alignment Project: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models
- arxiv url: http://arxiv.org/abs/2404.16019v1
- Date: Wed, 24 Apr 2024 17:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:31:49.089201
- Title: The PRISM Alignment Project: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models
- Title(参考訳): PRISMアライメントプロジェクト:大規模言語モデルの主観的・多文化的アライメントに関する参加的・代表的・個人的フィードバック
- Authors: Hannah Rose Kirk, Alexander Whitefield, Paul Röttger, Andrew Bean, Katerina Margatina, Juan Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He, Bertie Vidgen, Scott A. Hale,
- Abstract要約: PRISMは,75か国から1500人の多様な参加者を対象に,社会デマトグラフィーをマッピングし,嗜好を提示する新しいデータセットである。
PRISMは、(i)ヒトのフィードバックデータにおける地理的および人口統計学的関与、(ii)集団福祉(UKとUS)を理解するための2つの国勢調査表現サンプル、(iii)全ての評価が詳細な参加者プロファイルに関連付けられている個別化されたフィードバックに寄与する。
- 参考スコア(独自算出の注目度): 67.38144169029617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human feedback plays a central role in the alignment of Large Language Models (LLMs). However, open questions remain about the methods (how), domains (where), people (who) and objectives (to what end) of human feedback collection. To navigate these questions, we introduce PRISM, a new dataset which maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries, to their contextual preferences and fine-grained feedback in 8,011 live conversations with 21 LLMs. PRISM contributes (i) wide geographic and demographic participation in human feedback data; (ii) two census-representative samples for understanding collective welfare (UK and US); and (iii) individualised feedback where every rating is linked to a detailed participant profile, thus permitting exploration of personalisation and attribution of sample artefacts. We focus on collecting conversations that centre subjective and multicultural perspectives on value-laden and controversial topics, where we expect the most interpersonal and cross-cultural disagreement. We demonstrate the usefulness of PRISM via three case studies of dialogue diversity, preference diversity, and welfare outcomes, showing that it matters which humans set alignment norms. As well as offering a rich community resource, we advocate for broader participation in AI development and a more inclusive approach to technology design.
- Abstract(参考訳): 人間のフィードバックは、大規模言語モデル(LLM)のアライメントにおいて中心的な役割を果たす。
しかしながら、人間のフィードバック収集の方法(方法)、ドメイン(場所)、人(人)、目的(目的)について、オープンな疑問が残る。
PRISMは,75か国から1500の多様な参加者の好みを,21のLDMと8,011のライブ会話において,文脈的嗜好ときめ細かいフィードバックにマッピングする新しいデータセットである。
PRISM の貢献
一 人的フィードバックデータにおける広域的及び人口統計学的関与
(二 集団福祉(英国及び米国)の理解のための国勢調査表示サンプル二点、及び
三 すべての評価が詳細な参加者プロファイルに関連づけられた個別のフィードバックにより、個人化及びサンプルアーティファクトの帰属が図られる。
我々は、主観的・多文化的な視点を主眼とする会話の収集に重点を置いており、最も対人的・異文化的な意見の相違を期待する。
我々は,対話の多様性,嗜好の多様性,福祉効果の3つのケーススタディを通じて,PRISMの有用性を実証し,人間がアライメント規範を設定することの重要性を示した。
私たちは、リッチなコミュニティリソースを提供するだけでなく、AI開発への幅広い参加と、技術設計に対するより包括的なアプローチを提唱しています。
関連論文リスト
- Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Moral Machine 実験に基づいて,MultiTP と呼ばれる100以上の言語でモラルジレンマヴィグネットの言語間コーパスを開発する。
分析では、19の異なるLLMと人間の判断を一致させ、6つのモラル次元をまたいだ嗜好を捉えた。
我々は、AIシステムにおける一様道徳的推論の仮定に挑戦し、言語間のアライメントの顕著なばらつきを発見した。
論文 参考訳(メタデータ) (2024-07-02T14:02:53Z) - Whose Preferences? Differences in Fairness Preferences and Their Impact on the Fairness of AI Utilizing Human Feedback [8.04095222893591]
我々は、人種、年齢、政治的スタンス、教育水準、LGBTQ+アノテーターのアイデンティティによって、公平さの選好に大きなギャップを見いだす。
また、テキストで言及された人口統計は、ユーザーがモデレーションにおいて個人の公平さをどう知覚するかに大きな影響を及ぼすことを示した。
論文 参考訳(メタデータ) (2024-06-09T19:42:25Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
大規模言語モデル(LLM)の社会的・文化的変動を評価するためのデータセット「CIVICS:文化インフォームド・バリュース・インクルーシブ・コーパス・フォー・ソシエティ・インパクト」
我々は、LGBTQIの権利、社会福祉、移民、障害権利、代理など、特定の社会的に敏感なトピックに対処する、手作りの多言語プロンプトのデータセットを作成します。
論文 参考訳(メタデータ) (2024-05-22T20:19:10Z) - D3CODE: Disentangling Disagreements in Data across Cultures on Offensiveness Detection and Evaluation [5.9053106775634685]
4k以上のアノテーションをアノテータのプールにアノテートした4.5K以上の文で、攻撃的言語のための並列アノテーションの大規模なクロスカルチャーデータセットを紹介した。
このデータセットには、ケア、平等、比例、権威、忠誠、純粋性の6つの道徳的基礎に沿って収集されたアノテーターの道徳的価値が含まれている。
分析の結果,アノテータの知覚は個々の道徳的価値観によって形成されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-04-16T19:12:03Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
LLM(Large Language Models)は,異なる文化で採用されている多様な知識を真にカプセル化していることを示す。
社会学的調査をシミュレートし、実際の調査参加者のモデル応答を参考として、文化的アライメントの定量化を行う。
本稿では,人類学的推論を活用し,文化的アライメントを高める新しい手法である人類学的プロンプティングを紹介する。
論文 参考訳(メタデータ) (2024-02-20T18:47:28Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
大規模言語モデル(LLM)は、特定のグループや集団の意見が不足している偏りのある応答を生成することが知られている。
本稿では, LLM を用いて特定の視点の制御可能な生成を実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T19:01:13Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
大規模で高品質で多様なAIフィードバックデータセットである textscUltraFeedback を提示する。
我々の研究は、強力なオープンソースのチャット言語モデルを構築する上で、スケールしたAIフィードバックデータの有効性を検証する。
論文 参考訳(メタデータ) (2023-10-02T17:40:01Z) - Towards Measuring the Representation of Subjective Global Opinions in Language Models [26.999751306332165]
大規模言語モデル(LLM)は、社会問題に関する多様なグローバルな視点を公平に表すものではない。
本研究では,どの意見がモデル生成応答に類似しているかを定量的に評価する枠組みを開発する。
他者が使用して構築するためのデータセットをリリースしています。
論文 参考訳(メタデータ) (2023-06-28T17:31:53Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。