Social Media Use is Predictable from App Sequences: Using LSTM and Transformer Neural Networks to Model Habitual Behavior
- URL: http://arxiv.org/abs/2404.16066v2
- Date: Sun, 23 Jun 2024 14:39:13 GMT
- Title: Social Media Use is Predictable from App Sequences: Using LSTM and Transformer Neural Networks to Model Habitual Behavior
- Authors: Heinrich Peters, Joseph B. Bayer, Sandra C. Matz, Yikun Chi, Sumer S. Vaid, Gabriella M. Harari,
- Abstract summary: The present paper introduces a novel approach to studying social media habits through predictive modeling of sequential smartphone user behaviors.
We show that (i) social media use is predictable at the within and between-person level and that (ii) there are robust individual differences in the predictability of social media use.
- Score: 0.11086185608421924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present paper introduces a novel approach to studying social media habits through predictive modeling of sequential smartphone user behaviors. While much of the literature on media and technology habits has relied on self-report questionnaires and simple behavioral frequency measures, we examine an important yet understudied aspect of media and technology habits: their embeddedness in repetitive behavioral sequences. Leveraging Long Short-Term Memory (LSTM) and transformer neural networks, we show that (i) social media use is predictable at the within and between-person level and that (ii) there are robust individual differences in the predictability of social media use. We examine the performance of several modeling approaches, including (i) global models trained on the pooled data from all participants, (ii) idiographic person-specific models, and (iii) global models fine-tuned on person-specific data. Neither person-specific modeling nor fine-tuning on person-specific data substantially outperformed the global models, indicating that the global models were able to represent a variety of idiosyncratic behavioral patterns. Additionally, our analyses reveal that the person-level predictability of social media use is not substantially related to the frequency of smartphone use in general or the frequency of social media use, indicating that our approach captures an aspect of habits that is distinct from behavioral frequency. Implications for habit modeling and theoretical development are discussed.
Related papers
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Unified Dynamic Scanpath Predictors Outperform Individually Trained Neural Models [18.327960366321655]
We develop a deep learning-based social cue integration model for saliency prediction to predict scanpaths in videos.
We evaluate our approach on gaze of dynamic social scenes, observed under the free-viewing condition.
Results indicate that a single unified model, trained on all the observers' scanpaths, performs on par or better than individually trained models.
arXiv Detail & Related papers (2024-05-05T13:15:11Z) - Neural Mixed Effects for Nonlinear Personalized Predictions [32.86609564572087]
We propose Neural Mixed Effect (NME) models to optimize nonlinear person-specific parameters anywhere in a neural network in a scalable manner.
NME combines the efficiency of neural network optimization with nonlinear mixed effects modeling.
arXiv Detail & Related papers (2023-06-13T21:47:30Z) - Multi-Timescale Modeling of Human Behavior [0.18199355648379031]
We propose an LSTM network architecture that processes behavioral information at multiple timescales to predict future behavior.
We evaluate our architecture on data collected in an urban search and rescue scenario simulated in a virtual Minecraft-based testbed.
arXiv Detail & Related papers (2022-11-16T15:58:57Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Incorporating Heterogeneous User Behaviors and Social Influences for
Predictive Analysis [32.31161268928372]
We aim to incorporate heterogeneous user behaviors and social influences for behavior predictions.
This paper proposes a variant of Long-Short Term Memory (LSTM) which can consider context while a behavior sequence.
A residual learning-based decoder is designed to automatically construct multiple high-order cross features based on social behavior representation.
arXiv Detail & Related papers (2022-07-24T17:05:37Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - Soft Attention: Does it Actually Help to Learn Social Interactions in
Pedestrian Trajectory Prediction? [2.180763067449862]
We consider the problem of predicting the future path of a pedestrian using its motion history and the motion history of the surrounding pedestrians.
Deep-learning has become the main tool used to model the impact of social interactions on a pedestrian's motion.
arXiv Detail & Related papers (2021-06-16T17:39:35Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.