S2DEVFMAP: Self-Supervised Learning Framework with Dual Ensemble Voting Fusion for Maximizing Anomaly Prediction in Timeseries
- URL: http://arxiv.org/abs/2404.16179v1
- Date: Wed, 24 Apr 2024 20:09:21 GMT
- Title: S2DEVFMAP: Self-Supervised Learning Framework with Dual Ensemble Voting Fusion for Maximizing Anomaly Prediction in Timeseries
- Authors: Sarala Naidu, Ning Xiong,
- Abstract summary: Anomaly detection plays a crucial role in industrial settings, particularly in maintaining the reliability and optimal performance of cooling systems.
This work proposes a novel, robust approach using five heterogeneous independent models combined with a dual ensemble fusion of voting techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection plays a crucial role in industrial settings, particularly in maintaining the reliability and optimal performance of cooling systems. Traditional anomaly detection methods often face challenges in handling diverse data characteristics and variations in noise levels, resulting in limited effectiveness. And yet traditional anomaly detection often relies on application of single models. This work proposes a novel, robust approach using five heterogeneous independent models combined with a dual ensemble fusion of voting techniques. Diverse models capture various system behaviors, while the fusion strategy maximizes detection effectiveness and minimizes false alarms. Each base autoencoder model learns a unique representation of the data, leveraging their complementary strengths to improve anomaly detection performance. To increase the effectiveness and reliability of final anomaly prediction, dual ensemble technique is applied. This approach outperforms in maximizing the coverage of identifying anomalies. Experimental results on a real-world dataset of industrial cooling system data demonstrate the effectiveness of the proposed approach. This approach can be extended to other industrial applications where anomaly detection is critical for ensuring system reliability and preventing potential malfunctions.
Related papers
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.
We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.
By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.
It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.
We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.
Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
arXiv Detail & Related papers (2024-05-06T07:44:07Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
Anomaly detection is critical for the secure and reliable operation of industrial control systems.
This paper presents a novel deep generative model to meet this need.
arXiv Detail & Related papers (2024-05-03T23:58:27Z) - Contrastive Multi-Modal Representation Learning for Spark Plug Fault
Diagnosis [0.21847754147782888]
We present a Denoising Multi-Modal Autoencoder with a unique training strategy based on contrastive learning paradigm.
The presented approach achieves excellent performance in fusing multiple modalities (or views) of data into an enriched common representation.
The presented methodology enables multi-modal fault diagnosis systems to perform more robustly in case of sensor failure occurrence.
arXiv Detail & Related papers (2023-11-04T00:04:09Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.