論文の概要: ABCD: Trust enhanced Attention based Convolutional Autoencoder for Risk Assessment
- arxiv url: http://arxiv.org/abs/2404.16183v1
- Date: Wed, 24 Apr 2024 20:15:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 15:27:26.526865
- Title: ABCD: Trust enhanced Attention based Convolutional Autoencoder for Risk Assessment
- Title(参考訳): ABCD:リスクアセスメントのための信頼強化アテンションベースの畳み込みオートエンコーダ
- Authors: Sarala Naidu, Ning Xiong,
- Abstract要約: 産業システムにおける異常検出は、機器故障の防止、リスク識別の確保、システム全体の効率の維持に不可欠である。
従来の監視方法は、固定されたしきい値と経験則に依存しており、システムの健康状態の微妙な変化を検出し、差し迫った失敗を予測するのに十分な敏感ではない。
本稿では,リスク検出のためのアテンションベース畳み込みオートエンコーダ(ABCD)を提案する。
ABCDは、実世界の産業用冷却システムの歴史的データから導電率の正常な挙動を学習し、入力データを再構成し、期待されるパターンから逸脱する異常を識別する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in industrial systems is crucial for preventing equipment failures, ensuring risk identification, and maintaining overall system efficiency. Traditional monitoring methods often rely on fixed thresholds and empirical rules, which may not be sensitive enough to detect subtle changes in system health and predict impending failures. To address this limitation, this paper proposes, a novel Attention-based convolutional autoencoder (ABCD) for risk detection and map the risk value derive to the maintenance planning. ABCD learns the normal behavior of conductivity from historical data of a real-world industrial cooling system and reconstructs the input data, identifying anomalies that deviate from the expected patterns. The framework also employs calibration techniques to ensure the reliability of its predictions. Evaluation results demonstrate that with the attention mechanism in ABCD a 57.4% increase in performance and a reduction of false alarms by 9.37% is seen compared to without attention. The approach can effectively detect risks, the risk priority rank mapped to maintenance, providing valuable insights for cooling system designers and service personnel. Calibration error of 0.03% indicates that the model is well-calibrated and enhances model's trustworthiness, enabling informed decisions about maintenance strategies
- Abstract(参考訳): 産業システムにおける異常検出は、機器故障の防止、リスク識別の確保、システム全体の効率の維持に不可欠である。
従来の監視方法は、固定されたしきい値と経験則に依存しており、システムの健康状態の微妙な変化を検出し、差し迫った失敗を予測するのに十分な敏感ではない。
この制限に対処するため,リスク検出のためのABCD(Attention-based convolutional autoencoder)を提案する。
ABCDは、実世界の産業用冷却システムの歴史的データから導電率の正常な挙動を学習し、入力データを再構成し、期待されるパターンから逸脱する異常を識別する。
このフレームワークは、予測の信頼性を確保するためにキャリブレーション技術も採用している。
その結果,ABCDでは注意機構が57.4%向上し,誤報が9.37%減少した。
このアプローチは、メンテナンスにマップされたリスク優先度ランクを効果的に検出し、冷却システム設計者とサービス担当者に貴重な洞察を提供する。
0.03%の校正誤差は、モデルが十分に校正され、モデルの信頼性を高めることを示し、メンテナンス戦略に関する情報的決定を可能にする。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - Trustworthy Intrusion Detection: Confidence Estimation Using Latent Space [7.115540429006041]
侵入検知システム(IDS)における異常検出の信頼性向上のための新しい手法を提案する。
遅延空間表現に基づく信頼度尺度の開発により,サイバー攻撃に対するIDS予測の信頼性向上を目指す。
NSL-KDDデータセットの適用により,通常のネットワークアクティビティと悪意のあるネットワークアクティビティを効果的に区別するバイナリ分類タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-09-19T08:09:44Z) - Uncertainty Quantification in Anomaly Detection with Cross-Conformal
$p$-Values [0.0]
本研究は, 異形間異常検出という, 異常検出のための新しい枠組みを導入する。
本研究では,不確実な量子化異常検出のための統計効率(完全整形)と計算効率(完全整形)の両立を両立させる方法を提案する。
論文 参考訳(メタデータ) (2024-02-26T08:22:40Z) - KnowSafe: Combined Knowledge and Data Driven Hazard Mitigation in
Artificial Pancreas Systems [3.146076597280736]
KnowSafeは、安全を害する悪意のある攻撃や、CPSコントローラを標的とした偶発的な障害による安全性の危険を予測し軽減する。
安全制約のドメイン固有の知識とコンテキスト固有の緩和行動と機械学習(ML)技術を統合する。
KnowSafeは、システム状態の軌跡や潜在的な危険を予測する上で、より高い精度を達成することで、最先端技術よりも優れています。
論文 参考訳(メタデータ) (2023-11-13T16:43:34Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
機械学習の安全性クリティカルな応用においては、モデルが保守的であることが望ましいことが多い。
本研究では,不確実性データセットに対する信頼性を最小化するデータ駆動信頼性最小化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:05:36Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
本稿では, ほぼ現実的な外乱監視を実現するための超効率的な手法を提案する。
提案したtextttBayesAug は,従来の方式に比べて偽陽性率を 12.50% 以上削減する。
論文 参考訳(メタデータ) (2023-01-17T01:46:45Z) - Risk-Driven Design of Perception Systems [47.787943101699966]
システム全体の安全性を低下させるエラーを最小限に抑えるために,認識システムを設計することが重要である。
完全積分閉ループシステムの性能に及ぼす知覚誤差の影響を考慮に入れた認識システム設計のためのリスク駆動型アプローチを開発する。
本研究では,現実的な視界に基づく航空機による応用・回避技術の評価を行い,リスク駆動設計がベースラインシステム上での衝突リスクを37%低減することを示す。
論文 参考訳(メタデータ) (2022-05-21T21:14:56Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
本研究では, ベイズオートエンコーダ (BAEs) の定式化により, 全体の異常不確かさを定量化する。
不確実性の質を評価するために,不確実性の予測を拒否するオプションを追加して,異常を分類する作業を検討する。
本実験は,BAEと総異常不確かさが,ベンチマークデータセットと製造用実データセットのセットに与える影響を実証するものである。
論文 参考訳(メタデータ) (2022-02-25T12:20:04Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。