ABCD: Trust enhanced Attention based Convolutional Autoencoder for Risk Assessment
- URL: http://arxiv.org/abs/2404.16183v1
- Date: Wed, 24 Apr 2024 20:15:57 GMT
- Title: ABCD: Trust enhanced Attention based Convolutional Autoencoder for Risk Assessment
- Authors: Sarala Naidu, Ning Xiong,
- Abstract summary: Anomaly detection in industrial systems is crucial for preventing equipment failures, ensuring risk identification, and maintaining overall system efficiency.
Traditional monitoring methods often rely on fixed thresholds and empirical rules, which may not be sensitive enough to detect subtle changes in system health and predict impending failures.
This paper proposes Attention-based convolutional autoencoder (ABCD) for risk detection and map the risk value derive to the maintenance planning.
ABCD learns the normal behavior of conductivity from historical data of a real-world industrial cooling system and reconstructs the input data, identifying anomalies that deviate from the expected patterns.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in industrial systems is crucial for preventing equipment failures, ensuring risk identification, and maintaining overall system efficiency. Traditional monitoring methods often rely on fixed thresholds and empirical rules, which may not be sensitive enough to detect subtle changes in system health and predict impending failures. To address this limitation, this paper proposes, a novel Attention-based convolutional autoencoder (ABCD) for risk detection and map the risk value derive to the maintenance planning. ABCD learns the normal behavior of conductivity from historical data of a real-world industrial cooling system and reconstructs the input data, identifying anomalies that deviate from the expected patterns. The framework also employs calibration techniques to ensure the reliability of its predictions. Evaluation results demonstrate that with the attention mechanism in ABCD a 57.4% increase in performance and a reduction of false alarms by 9.37% is seen compared to without attention. The approach can effectively detect risks, the risk priority rank mapped to maintenance, providing valuable insights for cooling system designers and service personnel. Calibration error of 0.03% indicates that the model is well-calibrated and enhances model's trustworthiness, enabling informed decisions about maintenance strategies
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Trustworthy Intrusion Detection: Confidence Estimation Using Latent Space [7.115540429006041]
This work introduces a novel method for enhancing confidence in anomaly detection in Intrusion Detection Systems (IDS)
By developing a confidence metric derived from latent space representations, we aim to improve the reliability of IDS predictions against cyberattacks.
Applying to the NSL-KDD dataset, our approach focuses on binary classification tasks to effectively distinguish between normal and malicious network activities.
arXiv Detail & Related papers (2024-09-19T08:09:44Z) - Uncertainty Quantification in Anomaly Detection with Cross-Conformal
$p$-Values [0.0]
This work introduces a novel framework for anomaly detection, termed cross-conformal anomaly detection.
We show that the derived methods for calculating cross-conformal $p$-values strike a practical compromise between statistical efficiency (full-conformal) and computational efficiency (split-conformal) for uncertainty-quantified anomaly detection.
arXiv Detail & Related papers (2024-02-26T08:22:40Z) - KnowSafe: Combined Knowledge and Data Driven Hazard Mitigation in
Artificial Pancreas Systems [3.146076597280736]
KnowSafe predicts and mitigates safety hazards resulting from safety-critical malicious attacks or accidental faults targeting a CPS controller.
We integrate domain-specific knowledge of safety constraints and context-specific mitigation actions with machine learning (ML) techniques.
KnowSafe outperforms the state-of-the-art by achieving higher accuracy in predicting system state trajectories and potential hazards.
arXiv Detail & Related papers (2023-11-13T16:43:34Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z) - Risk-Driven Design of Perception Systems [47.787943101699966]
It is important that we design perception systems to minimize errors that reduce the overall safety of the system.
We develop a risk-driven approach to designing perception systems that accounts for the effect of perceptual errors on the performance of the fully-integrated, closed-loop system.
We evaluate our techniques on a realistic vision-based aircraft detect and avoid application and show that risk-driven design reduces collision risk by 37% over a baseline system.
arXiv Detail & Related papers (2022-05-21T21:14:56Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
In this work, the formulation of Bayesian autoencoders (BAEs) is adopted to quantify the total anomaly uncertainty.
To evaluate the quality of uncertainty, we consider the task of classifying anomalies with the additional option of rejecting predictions of high uncertainty.
Our experiments demonstrate the effectiveness of the BAE and total anomaly uncertainty on a set of benchmark datasets and two real datasets for manufacturing.
arXiv Detail & Related papers (2022-02-25T12:20:04Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.