論文の概要: An Analysis of Recent Advances in Deepfake Image Detection in an Evolving Threat Landscape
- arxiv url: http://arxiv.org/abs/2404.16212v1
- Date: Wed, 24 Apr 2024 21:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 15:27:26.432191
- Title: An Analysis of Recent Advances in Deepfake Image Detection in an Evolving Threat Landscape
- Title(参考訳): 進化する脅威景観におけるディープフェイク画像検出の最近の進歩の分析
- Authors: Sifat Muhammad Abdullah, Aravind Cheruvu, Shravya Kanchi, Taejoong Chung, Peng Gao, Murtuza Jadliwala, Bimal Viswanath,
- Abstract要約: ディープフェイクまたは合成画像は、オンラインプラットフォームに深刻なリスクをもたらす。
われわれは8つの最先端の検出器を研究し、配備の準備が整っていないと論じている。
- 参考スコア(独自算出の注目度): 11.45988746286973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake or synthetic images produced using deep generative models pose serious risks to online platforms. This has triggered several research efforts to accurately detect deepfake images, achieving excellent performance on publicly available deepfake datasets. In this work, we study 8 state-of-the-art detectors and argue that they are far from being ready for deployment due to two recent developments. First, the emergence of lightweight methods to customize large generative models, can enable an attacker to create many customized generators (to create deepfakes), thereby substantially increasing the threat surface. We show that existing defenses fail to generalize well to such \emph{user-customized generative models} that are publicly available today. We discuss new machine learning approaches based on content-agnostic features, and ensemble modeling to improve generalization performance against user-customized models. Second, the emergence of \textit{vision foundation models} -- machine learning models trained on broad data that can be easily adapted to several downstream tasks -- can be misused by attackers to craft adversarial deepfakes that can evade existing defenses. We propose a simple adversarial attack that leverages existing foundation models to craft adversarial samples \textit{without adding any adversarial noise}, through careful semantic manipulation of the image content. We highlight the vulnerabilities of several defenses against our attack, and explore directions leveraging advanced foundation models and adversarial training to defend against this new threat.
- Abstract(参考訳): ディープフェイクまたは合成画像は、オンラインプラットフォームに深刻なリスクをもたらす。
これにより、Deepfakeイメージを正確に検出し、公開可能なDeepfakeデータセット上での優れたパフォーマンスを実現するためのいくつかの研究活動が引き起こされた。
本研究は,8つの最先端検出器について検討し,最近の2つの発展により,配備の準備が整っていないことを論じるものである。
まず、大規模な生成モデルをカスタマイズするための軽量な方法の出現により、攻撃者は多数のカスタマイズされたジェネレータ(ディープフェイクを作成する)を作成でき、それによって脅威表面を大幅に増大させることができる。
既存のディフェンスは、現在一般に公開されているような 'emph{user-customized generative model' の一般化に失敗していることを示す。
本稿では、コンテンツに依存しない特徴に基づく新しい機械学習手法と、ユーザカスタマイズモデルに対する一般化性能を改善するためのアンサンブルモデリングについて論じる。
第2に,‘textit{vision foundation model’ – 複数の下流タスクに容易に適応可能な広範なデータに基づいてトレーニングされたマシンラーニングモデル – の出現は,攻撃者が既存の防御を回避可能な敵のディープフェイクを作らないために,誤用される可能性がある。
本稿では, 既存の基盤モデルを利用して, 画像内容のセマンティックな操作を通じて, 逆方向のサンプルを作成できる単純な逆方向攻撃を提案する。
我々は、攻撃に対するいくつかの防衛の脆弱性を強調し、この新たな脅威に対抗するために、先進的な基盤モデルと敵の訓練を活用する方向を探る。
関連論文リスト
- Transpose Attack: Stealing Datasets with Bidirectional Training [4.166238443183223]
敵は正統なモデルの下で保護された学習環境からデータセットを抽出できることを示す。
本稿では,感染モデルを検出するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-13T15:14:50Z) - Streamlining Attack Tree Generation: A Fragment-Based Approach [39.157069600312774]
本稿では,公開情報セキュリティデータベースの情報を活用した,フラグメントベースのアタックグラフ生成手法を提案する。
また,攻撃グラフ生成手法として,攻撃モデリングのためのドメイン固有言語を提案する。
論文 参考訳(メタデータ) (2023-10-01T12:41:38Z) - Careful What You Wish For: on the Extraction of Adversarially Trained
Models [2.707154152696381]
最近の機械学習(ML)モデルに対する攻撃は、いくつかのセキュリティとプライバシの脅威を引き起こす。
本稿では,敵の学習したモデルに対する抽出攻撃を評価する枠組みを提案する。
本研究では, 自然学習環境下で得られたモデルよりも, 敵の訓練を受けたモデルの方が抽出攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2022-07-21T16:04:37Z) - Deepfake Forensics via An Adversarial Game [99.84099103679816]
顔偽造と画像・映像品質の両面での一般化能力向上のための対人訓練を提唱する。
AIベースの顔操作は、しばしば、一般化が困難であるモデルによって容易に発見できる高周波アーティファクトにつながることを考慮し、これらの特定のアーティファクトを曖昧にしようとする新しい逆トレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-03-25T02:20:08Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
ニューラルネットワークは、人間の視覚にほとんど受容できない敵の例に弱いことがよく確認されている。
既存の防衛は、敵の攻撃に対するモデルの堅牢性を強化する傾向にある。
本稿では,新たな雑音と組み合わせた新しい手法を提案し,不整合戦略を用いて敵のサンプルを検出する。
論文 参考訳(メタデータ) (2020-09-06T13:57:17Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z) - Orthogonal Deep Models As Defense Against Black-Box Attacks [71.23669614195195]
攻撃者が標的モデルに類似したモデルを用いて攻撃を発生させるブラックボックス設定における深層モデル固有の弱点について検討する。
本稿では,深部モデルの内部表現を他のモデルに直交させる新しい勾配正規化手法を提案する。
様々な大規模モデルにおいて,本手法の有効性を検証する。
論文 参考訳(メタデータ) (2020-06-26T08:29:05Z) - Model Watermarking for Image Processing Networks [120.918532981871]
深層モデルの知的財産権を保護する方法は、非常に重要であるが、真に研究されていない問題である。
画像処理モデルを保護するための最初のモデル透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-25T18:36:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。