Reinforcement Learning with Generative Models for Compact Support Sets
- URL: http://arxiv.org/abs/2404.16300v1
- Date: Thu, 25 Apr 2024 02:48:16 GMT
- Title: Reinforcement Learning with Generative Models for Compact Support Sets
- Authors: Nico Schiavone, Xingyu Li,
- Abstract summary: We propose a framework utilizing reinforcement learning as a control for foundation models.
Our framework produced excellent results, increasing classification accuracy by significant margins for no additional labelling or data cost.
- Score: 10.041289551532804
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models contain a wealth of information from their vast number of training samples. However, most prior arts fail to extract this information in a precise and efficient way for small sample sizes. In this work, we propose a framework utilizing reinforcement learning as a control for foundation models, allowing for the granular generation of small, focused synthetic support sets to augment the performance of neural network models on real data classification tasks. We first allow a reinforcement learning agent access to a novel context based dictionary; the agent then uses this dictionary with a novel prompt structure to form and optimize prompts as inputs to generative models, receiving feedback based on a reward function combining the change in validation accuracy and entropy. A support set is formed this way over several exploration steps. Our framework produced excellent results, increasing classification accuracy by significant margins for no additional labelling or data cost.
Related papers
- Adjusting Pretrained Backbones for Performativity [34.390793811659556]
We propose a novel technique to adjust pretrained backbones for performativity in a modular way.
We show how it leads to smaller loss along the retraining trajectory and enables us to effectively select among candidate models to anticipate performance degradations.
arXiv Detail & Related papers (2024-10-06T14:41:13Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Exploiting Representation Bias for Data Distillation in Abstractive Text
Summarization [25.467836837575742]
We show that deep models fail to capture the diversity of the input space.
We employ clustering techniques to learn the diversity of a model's sample space.
We devise a metric to filter out redundant data points to make the model more robust and less data hungry.
arXiv Detail & Related papers (2023-12-10T22:30:03Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Tracing Origins: Coref-aware Machine Reading Comprehension [43.352833140317486]
We imitated the human's reading process in connecting the anaphoric expressions and leverage the coreference information to enhance the word embeddings from the pre-trained model.
We demonstrated that the explicit incorporation of the coreference information in fine-tuning stage performed better than the incorporation of the coreference information in training a pre-trained language models.
arXiv Detail & Related papers (2021-10-15T09:28:35Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.