論文の概要: An Improved Graph Pooling Network for Skeleton-Based Action Recognition
- arxiv url: http://arxiv.org/abs/2404.16359v1
- Date: Thu, 25 Apr 2024 06:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:38:43.579600
- Title: An Improved Graph Pooling Network for Skeleton-Based Action Recognition
- Title(参考訳): 骨格に基づく行動認識のための改良されたグラフポーリングネットワーク
- Authors: Cong Wu, Xiao-Jun Wu, Tianyang Xu, Josef Kittler,
- Abstract要約: IGPNと呼ばれる改良グラフポーリングネットワークを提案する。
本手法は,構造分割に基づく領域認識プール戦略を取り入れた手法である。
プラグアンドプレイ構造として,提案手法は既存のGCNモデルとシームレスに組み合わせることができる。
- 参考スコア(独自算出の注目度): 35.26953105240661
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pooling is a crucial operation in computer vision, yet the unique structure of skeletons hinders the application of existing pooling strategies to skeleton graph modelling. In this paper, we propose an Improved Graph Pooling Network, referred to as IGPN. The main innovations include: Our method incorporates a region-awareness pooling strategy based on structural partitioning. The correlation matrix of the original feature is used to adaptively adjust the weight of information in different regions of the newly generated features, resulting in more flexible and effective processing. To prevent the irreversible loss of discriminative information, we propose a cross fusion module and an information supplement module to provide block-level and input-level information respectively. As a plug-and-play structure, the proposed operation can be seamlessly combined with existing GCN-based models. We conducted extensive evaluations on several challenging benchmarks, and the experimental results indicate the effectiveness of our proposed solutions. For example, in the cross-subject evaluation of the NTU-RGB+D 60 dataset, IGPN achieves a significant improvement in accuracy compared to the baseline while reducing Flops by nearly 70%; a heavier version has also been introduced to further boost accuracy.
- Abstract(参考訳): ポーリングはコンピュータビジョンにおいて重要な操作であるが、骨格のユニークな構造は、スケルトングラフモデリングへの既存のプール戦略の適用を妨げる。
本稿では,IGPNと呼ばれる改良グラフポーリングネットワークを提案する。
我々の手法は、構造分割に基づく領域認識プール戦略を取り入れています。
原特徴の相関行列を用いて、新たに生成された特徴の異なる領域における情報の重み付けを適応的に調整し、より柔軟で効率的な処理を行う。
識別情報の可逆的損失を防止するため,ブロックレベル情報と入力レベル情報それぞれを提供するクロスフュージョンモジュールとインフォメーションサプリメントモジュールを提案する。
プラグアンドプレイ構造として,提案手法は既存のGCNモデルとシームレスに組み合わせることができる。
実験結果から,提案手法の有効性が示唆された。
例えば、NTU-RGB+D 60データセットのクロスオブジェクト評価では、GPNはFlopsを70%近く削減し、ベースラインと比較して精度が大幅に向上した。
関連論文リスト
- A Dual Adaptive Assignment Approach for Robust Graph-Based Clustering [18.614842530666834]
我々は、ロバストグラフベースクラスタリング(RDSA)のためのDual Adaptive Assignment Approachと呼ばれる新しいフレームワークを導入する。
RDSAは3つの主要なコンポーネントから構成される: (i) グラフのトポロジ的特徴とノード属性を効果的に統合するノード埋め込みモジュール、 (ii) ノード割り当てに親和性行列を利用することでグラフモジュラリティを改善する構造ベースのソフトアサインモジュール、 (iii) コミュニティランドマークを識別し、モデルの堅牢性を高めるためにノード割り当てを洗練させるノードベースのソフトアサインモジュール。
この結果から,RDSAはクラスタリングの有効性やロバスト性,適応性など,グラフの種類によって堅牢なクラスタリングを実現していることが明らかとなった。
論文 参考訳(メタデータ) (2024-10-29T05:18:34Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Multi-Dimensional Refinement Graph Convolutional Network with Robust
Decouple Loss for Fine-Grained Skeleton-Based Action Recognition [19.031036881780107]
本稿では,CVSTA(Channel-Variable Space-Temporal Attention)と呼ばれるフレキシブルアテンションブロックを提案する。
CVSTAに基づくMDR-GCN(Multi-dimensional Refinement Graph Convolutional Network)を構築し,チャネルレベル,ジョイントレベル,フレームレベルの特徴の識別を改善する。
さらに,CVSTAの効果を著しく向上し,騒音の影響を低減させるロバスト・デデュプル・ロス(RDL)を提案する。
論文 参考訳(メタデータ) (2023-06-27T09:23:36Z) - Learning Target-aware Representation for Visual Tracking via Informative
Interactions [49.552877881662475]
トラッキングのための特徴表現のターゲット認識能力を改善するために,新しいバックボーンアーキテクチャを提案する。
提案したGIMモジュールとInBN機構は、CNNやTransformerなど、さまざまなバックボーンタイプに適用可能である。
論文 参考訳(メタデータ) (2022-01-07T16:22:27Z) - Structure-Aware Hierarchical Graph Pooling using Information Bottleneck [2.7088996845250897]
グラフプーリングは、グラフ分類および回帰タスクにおけるグラフニューラルネットワーク(GNN)の重要な要素です。
本稿では,情報ボトルネック(IB)の原理を応用した,HIBPoolという新しいプール手法を提案する。
また,グラフの局所部分グラフ構造をキャプチャするために,新しい構造認識型識別プーリング読み出し(dip-readout)関数を導入する。
論文 参考訳(メタデータ) (2021-04-27T07:27:43Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Stronger, Faster and More Explainable: A Graph Convolutional Baseline
for Skeleton-based Action Recognition [22.90127409366107]
グラフ畳み込みネットワーク(GCN)に基づく効率的だが強力なベースラインを提案する。
畳み込みニューラルネットワーク(CNN)におけるResNetアーキテクチャの成功に触発されたResGCNモジュールがGCNで導入された。
PartAttブロックは、アクションシーケンス全体の上で最も重要な身体部分を発見するために提案される。
論文 参考訳(メタデータ) (2020-10-20T02:56:58Z) - Hierarchical Bi-Directional Feature Perception Network for Person
Re-Identification [12.259747100939078]
過去の人物再同定(Re-ID)モデルは、画像の最も識別性の高い領域に焦点を当てることを目的としている。
本稿では,階層型双方向特徴知覚ネットワーク (HBFP-Net) という新しいモデルを提案する。
Market-1501, CUHK03, DukeMTMC-ReIDデータセットなどの主要な評価実験により, 提案手法が最近のSOTA Re-IDモデルより優れていることが示された。
論文 参考訳(メタデータ) (2020-08-08T12:33:32Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。