論文の概要: Spatiotemporal Graph Learning with Direct Volumetric Information Passing and Feature Enhancement
- arxiv url: http://arxiv.org/abs/2409.18013v2
- Date: Tue, 07 Oct 2025 16:51:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.799587
- Title: Spatiotemporal Graph Learning with Direct Volumetric Information Passing and Feature Enhancement
- Title(参考訳): 直接ボリューム情報パスと特徴強調を用いた時空間グラフ学習
- Authors: Yuan Mi, Qi Wang, Xueqin Hu, Yike Guo, Ji-Rong Wen, Yang Liu, Hao Sun,
- Abstract要約: 本稿では,CeFeGNN(CeFeGNN)とCell-embeddedとFeature-enhanced Graph Neural Networkを学習用として提案する。
学習可能なセル属性を共通ノードエッジメッセージパッシングプロセスに埋め込むことで,地域特性の空間依存性をよりよく把握する。
各種PDEシステムと1つの実世界のデータセットを用いた実験により、CeFeGNNは他のベースラインと比較して優れた性能を発揮することが示された。
- 参考スコア(独自算出の注目度): 62.91536661584656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven learning of physical systems has kindled significant attention, where many neural models have been developed. In particular, mesh-based graph neural networks (GNNs) have demonstrated significant potential in modeling spatiotemporal dynamics across arbitrary geometric domains. However, the existing node-edge message-passing and aggregation mechanism in GNNs limits the representation learning ability. In this paper, we proposed a dual-module framework, Cell-embedded and Feature-enhanced Graph Neural Network (aka, CeFeGNN), for learning spatiotemporal dynamics. Specifically, we embed learnable cell attributions to the common node-edge message passing process, which better captures the spatial dependency of regional features. Such a strategy essentially upgrades the local aggregation scheme from first order (e.g., from edge to node) to a higher order (e.g., from volume and edge to node), which takes advantage of volumetric information in message passing. Meanwhile, a novel feature-enhanced block is designed to further improve the model's performance and alleviate the over-smoothness problem. Extensive experiments on various PDE systems and one real-world dataset demonstrate that CeFeGNN achieves superior performance compared with other baselines.
- Abstract(参考訳): 物理システムのデータ駆動学習は、多くのニューラルモデルが開発されている重要な注目を集めている。
特に、メッシュベースのグラフニューラルネットワーク(GNN)は、任意の幾何学的領域にまたがる時空間力学をモデル化する上で大きな可能性を示している。
しかし、GNNの既存のノードエッジメッセージパッシングとアグリゲーション機構は、表現学習能力を制限している。
本稿では,時空間力学を学習するためのデュアルモジュールフレームワークCell-embeddedとFeature-enhanced Graph Neural Network(別名CeFeGNN)を提案する。
具体的には,学習可能なセル属性を共通ノードエッジメッセージパッシングプロセスに埋め込む。
このような戦略は、局所的なアグリゲーションスキームを1次(例えば、エッジからノード)から高次(例えば、ボリュームとエッジからノード)にアップグレードし、メッセージパッシングにおけるボリューム情報を活用する。
一方,新しい機能強化ブロックは,モデルの性能をさらに向上し,過度なスムースネス問題を緩和するように設計されている。
各種PDEシステムと1つの実世界のデータセットの大規模な実験は、CeFeGNNが他のベースラインと比較して優れた性能を発揮することを示した。
関連論文リスト
- PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems [31.006807854698376]
我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
論文 参考訳(メタデータ) (2024-10-02T08:54:18Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
グラフニューラルネットワーク(GNN)は、ソーシャルネットワークや生体システムのようなドメインで広く使われている。
GNNのローカリティ仮定は、グラフ内の長距離依存関係とグローバルパターンをキャプチャする能力を損なう。
本稿では,ブラヒクロニスト問題から着想を得た変分解析に基づく新しい帰納バイアスを提案する。
論文 参考訳(メタデータ) (2023-07-01T04:44:43Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - DPGNN: Dual-Perception Graph Neural Network for Representation Learning [21.432960458513826]
グラフニューラルネットワーク(GNN)は近年注目を集め、グラフベースのタスクの多くで顕著なパフォーマンスを実現している。
既存のGNNの多くは、メッセージパッシングパラダイムに基づいて、1つのトポロジ空間内の近隣情報を反復的に集約している。
本稿では,マルチステップメッセージソースの特性,ノード固有のメッセージ出力,マルチスペースメッセージインタラクションに基づく新しいメッセージパッシングパラダイムを提案する。
論文 参考訳(メタデータ) (2021-10-15T05:47:26Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
破滅的な忘れは、ニューラルネットワークが新しいタスクを学ぶ前に学んだ知識を「忘れる」傾向を指します。
本稿では,この問題を克服し,グラフニューラルネットワーク(GNN)における継続学習を強化するための新しいスキームを提案する。
私たちのアプローチの中心には、トポロジ認識重量保存(TWP)と呼ばれる汎用モジュールがあります。
論文 参考訳(メタデータ) (2020-12-10T22:30:25Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。