論文の概要: SwarmRL: Building the Future of Smart Active Systems
- arxiv url: http://arxiv.org/abs/2404.16388v1
- Date: Thu, 25 Apr 2024 07:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:28:55.254691
- Title: SwarmRL: Building the Future of Smart Active Systems
- Title(参考訳): SwarmRL:スマートアクティブシステムの構築
- Authors: Samuel Tovey, Christoph Lohrmann, Tobias Merkt, David Zimmer, Konstantin Nikolaou, Simon Koppenhöfer, Anna Bushmakina, Jonas Scheunemann, Christian Holm,
- Abstract要約: この研究は、インテリジェントなアクティブ粒子を研究するために設計されたPythonパッケージであるSwarmRLを紹介する。
SwarmRLは、顕微鏡コロイドを制御するモデルを開発するための使いやすいインターフェースを提供する。
- 参考スコア(独自算出の注目度): 1.8087133416885264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces SwarmRL, a Python package designed to study intelligent active particles. SwarmRL provides an easy-to-use interface for developing models to control microscopic colloids using classical control and deep reinforcement learning approaches. These models may be deployed in simulations or real-world environments under a common framework. We explain the structure of the software and its key features and demonstrate how it can be used to accelerate research. With SwarmRL, we aim to streamline research into micro-robotic control while bridging the gap between experimental and simulation-driven sciences. SwarmRL is available open-source on GitHub at https://github.com/SwarmRL/SwarmRL.
- Abstract(参考訳): この研究は、インテリジェントなアクティブ粒子を研究するために設計されたPythonパッケージであるSwarmRLを紹介する。
SwarmRLは、古典的な制御と深層強化学習アプローチを使用して、顕微鏡コロイドを制御するモデルを開発するための、使いやすいインターフェースを提供する。
これらのモデルは、共通のフレームワークの下でシミュレーションや実環境にデプロイすることができる。
ソフトウェアの構造とその重要な特徴を説明し、研究の加速にどのように使用できるかを示す。
SwarmRLでは,実験科学とシミュレーション科学のギャップを埋めつつ,マイクロロボット制御の研究を効率化することを目的としている。
SwarmRLはGitHubでhttps://github.com/SwarmRL/SwarmRLで公開されている。
関連論文リスト
- Scilab-RL: A software framework for efficient reinforcement learning and
cognitive modeling research [0.0]
Scilab-RLは、ロボットエージェントの認知モデリングと強化学習を効率的に研究するためのソフトウェアフレームワークである。
これは、Stable Baselines 3とOpenAIのジムインターフェースを使った目標条件強化学習に焦点を当てている。
これらの特徴によって、研究者が最小限の時間で実験を行うことで、研究成果を最大化する方法について説明する。
論文 参考訳(メタデータ) (2024-01-25T19:49:02Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
強化学習(RL)研究において、シミュレーションはアルゴリズム間のベンチマークを可能にする。
本稿では,ロボット応用のためのフレームワークであるKarolosを紹介する。
コードはオープンソースでGitHubに公開されており、ロボット工学におけるRLアプリケーションの研究を促進することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T23:14:02Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Transmit Power Control for Indoor Small Cells: A Method Based on
Federated Reinforcement Learning [2.392377380146]
本稿では,フェデレート強化学習(FRL)に基づく分散セル電力制御方式を提案する。
異なる屋内環境のモデルはトレーニングプロセス中にグローバルモデルに集約され、中央サーバは更新されたモデルを各クライアントにブロードキャストする。
一般化実験の結果, FRLモデルをベースモデルとして用いることにより, 新しい環境下でのモデルの収束速度が向上することが示された。
論文 参考訳(メタデータ) (2022-08-31T14:46:09Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models [0.0]
強化学習(RL)は、AI研究の最も活発な分野の1つです。
開発方法論はまだ遅れており、RLアプリケーションの開発を促進するための標準APIが不足している。
多目的エージェントベースのモデルと派生した単一目的強化学習環境の分離開発と保守のためのワークフローとツールを提示する。
論文 参考訳(メタデータ) (2021-02-19T09:25:21Z) - Reinforcement Learning for Control of Valves [0.0]
本稿では,非線形弁制御のための最適制御戦略として強化学習(RL)を提案する。
PID(proportional-integral-deivative)戦略に対して、統一されたフレームワークを用いて評価される。
論文 参考訳(メタデータ) (2020-12-29T09:01:47Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - MushroomRL: Simplifying Reinforcement Learning Research [60.70556446270147]
MushroomRLはオープンソースのPythonライブラリで、強化学習(RL)実験の実装と実行を簡単にするために開発された。
他の利用可能なライブラリと比較して、MushroomRLは、新しいRL方法論の実装とテストの労力を最小限に抑えるために、包括的で柔軟なフレームワークを提供することを目的として作られた。
論文 参考訳(メタデータ) (2020-01-04T17:23:34Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。