論文の概要: SINERGYM -- A virtual testbed for building energy optimization with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2412.08293v1
- Date: Wed, 11 Dec 2024 11:09:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:00:43.821104
- Title: SINERGYM -- A virtual testbed for building energy optimization with Reinforcement Learning
- Title(参考訳): SINERGYM -- 強化学習によるエネルギー最適化のための仮想テストベッド
- Authors: Alejandro Campoy-Nieves, Antonio Manjavacas, Javier Jiménez-Raboso, Miguel Molina-Solana, Juan Gómez-Romero,
- Abstract要約: 本稿では、大規模ビルディングシミュレーション、データ収集、継続的制御、実験監視のためのオープンソースのPythonベースの仮想テストベッドであるSinergymについて述べる。
- 参考スコア(独自算出の注目度): 40.71019623757305
- License:
- Abstract: Simulation has become a crucial tool for Building Energy Optimization (BEO) as it enables the evaluation of different design and control strategies at a low cost. Machine Learning (ML) algorithms can leverage large-scale simulations to learn optimal control from vast amounts of data without supervision, particularly under the Reinforcement Learning (RL) paradigm. Unfortunately, the lack of open and standardized tools has hindered the widespread application of ML and RL to BEO. To address this issue, this paper presents Sinergym, an open-source Python-based virtual testbed for large-scale building simulation, data collection, continuous control, and experiment monitoring. Sinergym provides a consistent interface for training and running controllers, predefined benchmarks, experiment visualization and replication support, and comprehensive documentation in a ready-to-use software library. This paper 1) highlights the main features of Sinergym in comparison to other existing frameworks, 2) describes its basic usage, and 3) demonstrates its applicability for RL-based BEO through several representative examples. By integrating simulation, data, and control, Sinergym supports the development of intelligent, data-driven applications for more efficient and responsive building operations, aligning with the objectives of digital twin technology.
- Abstract(参考訳): 建築エネルギー最適化 (BEO) において, 異なる設計・制御戦略を低コストで評価できるため, シミュレーションは重要なツールとなっている。
機械学習(ML)アルゴリズムは大規模なシミュレーションを利用して、特に強化学習(RL)パラダイムの下で、大量のデータから最適な制御を学ぶことができる。
残念ながら、オープンで標準化されたツールの欠如は、MLとRLをBEOに広く適用することを妨げている。
この問題に対処するため,大規模なビルディングシミュレーション,データ収集,継続的制御,実験監視のためのオープンソースのPythonベースの仮想テストベッドであるSinergymを提案する。
Sinergymは、コントローラのトレーニングと実行のための一貫したインターフェース、事前定義されたベンチマーク、ビジュアライゼーションとレプリケーションのサポート、そして利用可能なソフトウェアライブラリの包括的なドキュメントを提供する。
この論文は
1) 他の既存のフレームワークと比較して、Sinergymの主な特徴を強調します。
2)その基本的な使用法を記述し、
3) RLをベースとしたBEOに適用可能であることを示す。
シミュレーション、データ、制御を統合することで、Sinergymは、より効率的でレスポンシブなビルディングオペレーションのためのインテリジェントでデータ駆動のアプリケーションの開発を支援し、デジタルツイン技術の目的に合わせている。
関連論文リスト
- Resilient Control of Networked Microgrids using Vertical Federated
Reinforcement Learning: Designs and Real-Time Test-Bed Validations [5.394255369988441]
本稿では、(a)モデル複雑度、(b)ISRデバイスの未知の動的挙動、(b)マルチパーティ所有のネットワークグリッドにおけるデータ共有に関するプライバシー問題、(2)シミュレーションからハードウェア・イン・ザ・ループテストベッドへの学習制御の移行について、新しいフェデレーション強化学習(Fed-RL)アプローチを提案する。
実験により,シミュレータ学習したRLコントローラは実時間テストベッドのセットアップによる説得力のある結果が得られ,sim-to-realギャップの最小化が検証された。
論文 参考訳(メタデータ) (2023-11-21T00:59:27Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
現在の制御戦略と最適化アルゴリズムでは、そのほとんどはリアルタイムフィードバックから情報を受け取ることに依存している。
本稿では,システム制御のためのシステム特性を同時に構築することによる,ダイナミックな事前知識を組み込む,エンジニアフレンドリな制御戦略フレームワークを提案する。
典型的な制御戦略でシステム制御を加熱するケースでテストしたところ、我々のフレームワークは15%の省エネ性を持っていることがわかった。
論文 参考訳(メタデータ) (2023-01-23T09:07:07Z) - BEAR: Physics-Principled Building Environment for Control and
Reinforcement Learning [9.66911049633598]
BEARは制御強化学習のための物理を基礎とした建築環境である。
研究者はモデルベースとモデルフリーの両方のコントローラを、外部ビルディングシミュレータを併用することなく、Pythonの標準ビルディングモデルの広範なコレクションを使用してベンチマークすることができる。
モデル予測制御(MPC)と2つのケーススタディを持つ最先端RL法の両方を含む,異なるコントローラによるBEARの互換性と性能を実証する。
論文 参考訳(メタデータ) (2022-11-27T06:36:35Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
本稿では,SAM-RL と呼ばれる感性認識モデルに基づく強化学習システムを提案する。
SAM-RLは、センサーを意識した学習パイプラインによって、ロボットがタスクプロセスを監視するための情報的視点を選択することを可能にする。
我々は,ロボット組立,ツール操作,変形可能なオブジェクト操作という3つの操作タスクを達成するための実世界の実験に,我々のフレームワークを適用した。
論文 参考訳(メタデータ) (2022-10-27T05:30:43Z) - Learning to Fly -- a Gym Environment with PyBullet Physics for
Reinforcement Learning of Multi-agent Quadcopter Control [0.0]
本稿では,Bullet物理エンジンに基づく複数クワッドコプターのオープンソース環境を提案する。
マルチエージェントおよびビジョンベースの強化学習インターフェース、および現実的な衝突と空力効果のサポートは、私たちの知識の最高に、その種の最初のものにします。
論文 参考訳(メタデータ) (2021-03-03T02:47:59Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Learning Centric Wireless Resource Allocation for Edge Computing:
Algorithm and Experiment [15.577056429740951]
Edge Intelligenceは、センサー、通信、コンピューティングコンポーネントを統合し、さまざまな機械学習アプリケーションをサポートする、新興ネットワークアーキテクチャである。
既存の方法は2つの重要な事実を無視している: 1) 異なるモデルがトレーニングデータに不均一な要求を持っている; 2) シミュレーション環境と実環境との間にはミスマッチがある。
本稿では,複数のタスクの最悪の学習性能を最大化する学習中心の無線リソース割り当て方式を提案する。
論文 参考訳(メタデータ) (2020-10-29T06:20:40Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。