論文の概要: Constructing Optimal Noise Channels for Enhanced Robustness in Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2404.16417v1
- Date: Thu, 25 Apr 2024 08:49:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:28:55.219453
- Title: Constructing Optimal Noise Channels for Enhanced Robustness in Quantum Machine Learning
- Title(参考訳): 量子機械学習におけるロバスト性向上のための最適ノイズチャネルの構築
- Authors: David Winderl, Nicola Franco, Jeanette Miriam Lorenz,
- Abstract要約: 量子ノイズチャネルと差分プライバシー(DP)の関連について概説する。
我々は本質的に$epsilon$-DP:$(alpha, gamma)$- Channelsであるノイズチャネル群を構築する。
ノイズの非偏極化に対して最適なノイズチャネルを用いることの利点を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of Quantum Machine Learning (QML), the critical need to enhance security measures against adversarial attacks and protect QML models becomes increasingly evident. In this work, we outline the connection between quantum noise channels and differential privacy (DP), by constructing a family of noise channels which are inherently $\epsilon$-DP: $(\alpha, \gamma)$-channels. Through this approach, we successfully replicate the $\epsilon$-DP bounds observed for depolarizing and random rotation channels, thereby affirming the broad generality of our framework. Additionally, we use a semi-definite program to construct an optimally robust channel. In a small-scale experimental evaluation, we demonstrate the benefits of using our optimal noise channel over depolarizing noise, particularly in enhancing adversarial accuracy. Moreover, we assess how the variables $\alpha$ and $\gamma$ affect the certifiable robustness and investigate how different encoding methods impact the classifier's robustness.
- Abstract(参考訳): 量子機械学習(QML)の急速な進歩により、敵の攻撃に対するセキュリティ対策を強化し、QMLモデルを保護するための重要な必要性が高まっている。
本研究では、本質的に$\epsilon$-DP:$(\alpha, \gamma)$-channelsであるノイズチャネル群を構築することにより、量子ノイズチャネルと差分プライバシー(DP)の接続を概説する。
提案手法により, 脱分極およびランダムな回転チャネルで観測された$\epsilon$-DP境界を再現し, フレームワークの広範な一般化を確認した。
さらに、最適にロバストなチャネルを構築するために半定的なプログラムを使用する。
小型な実験実験では、ノイズの偏極化よりも最適なノイズチャネルを用いることで、特に対向精度を高める効果が示された。
さらに、変数 $\alpha$ と $\gamma$ が証明可能なロバスト性にどのように影響するかを評価し、異なるエンコーディング手法が分類器のロバスト性にどのように影響するかを調べる。
関連論文リスト
- Optimal Quantum Purity Amplification [2.05170973574812]
量子純度増幅(QPA)は、量子状態の劣化に対処する新しいアプローチを提供する。
本稿では,大域的偏極雑音に対する一般量子システムに対する最適QPAプロトコルを提案する。
この結果から,QPAは量子情報処理タスクの性能を向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-26T17:46:00Z) - Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping [57.40251549664762]
重み付き雑音による有害な影響に対処するため,メディアアンコールド・クリッピング (MAC) と呼ばれる新しい勾配クリッピング法を提案する。
また、MAC下でのアナログオーバー・ザ・エア・フェデレーション学習によるモデルトレーニングの収束率の解析式も導出する。
論文 参考訳(メタデータ) (2024-09-23T15:11:40Z) - Error filtration from optimized quantum circuit interference [0.0]
ノイズの多い量子ビットでエラーを軽減するためのハードウェア戦略を最適化する。
提案手法は, 誤差フィルタリングの物理原理に基づいて, 補助量子ビットを利用する。
論文 参考訳(メタデータ) (2024-09-02T17:58:44Z) - Layering and subpool exploration for adaptive Variational Quantum
Eigensolvers: Reducing circuit depth, runtime, and susceptibility to noise [0.0]
適応変分量子固有解法 (ADAPT-VQEs) は強い相関系のシミュレーションにおいて有望な候補である。
近年の取り組みは、アンザッツ回路のコンパクト化、または層化に向けられている。
層状化は振幅減衰や減音に対する耐雑音性の向上につながることを示す。
論文 参考訳(メタデータ) (2023-08-22T18:00:02Z) - Adaptive mitigation of time-varying quantum noise [0.1227734309612871]
現在の量子コンピュータは、高いエラー率の非定常ノイズチャネルに悩まされている。
チャネル条件の変化に応じて量子ノイズを学習・緩和するベイズ推論に基づく適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-16T01:33:07Z) - Amplitude-Varying Perturbation for Balancing Privacy and Utility in
Federated Learning [86.08285033925597]
本稿では,フェデレート学習のプライバシを保護するため,時変雑音振幅を持つ新しいDP摂動機構を提案する。
我々は、FLの過度な摂動ノイズによる早期収束を防止するために、シリーズのオンラインリファインメントを導出した。
新しいDP機構のプライバシ保存FLの収束と精度への寄与は、持続的な雑音振幅を持つ最先端のガウスノイズ機構と比較して相関する。
論文 参考訳(メタデータ) (2023-03-07T22:52:40Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
本稿では,NARL-Adjuster(NARL-Adjuster for brevity)と呼ばれる,ハイパーパラメータ予測関数を適応的に学習するメタラーニング手法を提案する。
4つのSOTAロバストな損失関数を我々のアルゴリズムに統合し,提案手法の一般性および性能をノイズ耐性と性能の両面で検証した。
論文 参考訳(メタデータ) (2023-01-18T04:54:58Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
雑音の緩和は、上界を導出する誤差まで行うことができる。
ノイズモデルとエラー軽減スキームの両方をテストするためにIBMのデバイスを使用した15(23)量子ビットの実験。
浅層深度ランダム回路によって生成されるHaar-random量子状態と状態に対して、同様の効果が期待できることを示す。
論文 参考訳(メタデータ) (2021-01-07T02:19:58Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
実効多部絡み(GME)認証のための条件付き目撃手法を導入する。
線形な二分割数における絡み合いの検出は, 多数の測定値によって線形にスケールし, GMEの認証に十分であることを示す。
本手法は, 距離3の位相的カラーコードとフラグベースの耐故障バージョンにおける安定化作用素の雑音可読化に適用する。
論文 参考訳(メタデータ) (2020-10-06T18:00:07Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
最適なロバストなポリシーの存在を示し、摂動に対する感度分析を行い、新しいロバストな学習アルゴリズムを設計する。
提案アルゴリズムの有効性はCart-Pole環境で検証する。
論文 参考訳(メタデータ) (2020-06-01T13:48:59Z) - Black-Box Certification with Randomized Smoothing: A Functional
Optimization Based Framework [60.981406394238434]
本稿では,非ガウス雑音とより一般的な攻撃に対する対向的認証の一般的な枠組みを提案する。
提案手法は,従来の手法よりも優れた認証結果を得るとともに,ランダム化スムーズな認証の新たな視点を提供する。
論文 参考訳(メタデータ) (2020-02-21T07:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。