論文の概要: SynCellFactory: Generative Data Augmentation for Cell Tracking
- arxiv url: http://arxiv.org/abs/2404.16421v1
- Date: Thu, 25 Apr 2024 08:51:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:19:10.453372
- Title: SynCellFactory: Generative Data Augmentation for Cell Tracking
- Title(参考訳): SynCellFactory: 細胞追跡のための生成データ拡張
- Authors: Moritz Sturm, Lorenzo Cerrone, Fred A. Hamprecht,
- Abstract要約: SynCellFactoryは再生細胞ビデオの拡張である。
SynCellFactoryの中心には、スタイルや動きのパターンにおいて、セルイメージをフォトリアリスティックな精度で合成するように微調整されたControlNetアーキテクチャがある。
- 参考スコア(独自算出の注目度): 15.416971751307509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cell tracking remains a pivotal yet challenging task in biomedical research. The full potential of deep learning for this purpose is often untapped due to the limited availability of comprehensive and varied training data sets. In this paper, we present SynCellFactory, a generative cell video augmentation. At the heart of SynCellFactory lies the ControlNet architecture, which has been fine-tuned to synthesize cell imagery with photorealistic accuracy in style and motion patterns. This technique enables the creation of synthetic yet realistic cell videos that mirror the complexity of authentic microscopy time-lapses. Our experiments demonstrate that SynCellFactory boosts the performance of well-established deep learning models for cell tracking, particularly when original training data is sparse.
- Abstract(参考訳): 細胞追跡は、生体医学研究において依然として重要な課題である。
この目的のためのディープラーニングの潜在能力は、包括的かつ多様なトレーニングデータセットの可用性が制限されているため、しばしば取り除かれます。
本稿では,SynCellFactoryについて述べる。
SynCellFactoryの中心には、スタイルや動きのパターンにおいて、セルイメージをフォトリアリスティックな精度で合成するように微調整されたControlNetアーキテクチャがある。
この技術は、本物の顕微鏡タイムラプスの複雑さを反映した合成的で現実的な細胞ビデオを作成することができる。
実験により,SynCellFactoryはセル追跡のためのよく確立されたディープラーニングモデルの性能を向上することを示した。
関連論文リスト
- RigLSTM: Recurrent Independent Grid LSTM for Generalizable Sequence
Learning [75.61681328968714]
本稿では,対象タスクの基盤となるモジュール構造を利用するために,リカレントな独立したGrid LSTM(RigLSTM)を提案する。
本モデルでは, セル選択, 入力特徴選択, 隠れ状態選択, ソフト状態更新を採用し, より優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-11-03T07:40:06Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning [102.46382882098847]
まず,合成から現実への新規な視点合成における合成データの影響について検討した。
本稿では,幾何制約を伴う多視点一貫した特徴を学習するために,幾何対応のコントラスト学習を導入することを提案する。
提案手法は,PSNR,SSIM,LPIPSの点で,既存の一般化可能な新規ビュー合成手法よりも高い画質で精細な画像を描画することができる。
論文 参考訳(メタデータ) (2023-03-20T12:06:14Z) - SynCLay: Interactive Synthesis of Histology Images from Bespoke Cellular
Layouts [0.5249805590164901]
我々は,現実的で高品質な組織像を構築できるSynCLayという新しいフレームワークを提案する。
我々は、SynCLayを対角的に訓練し、核分割と分類モデルを統合する。
本研究では,本フレームワークによって生成された合成データを用いて,限られた実データを増やすことで,細胞組成予測タスクの予測性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-28T11:07:00Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - Neural Cell Video Synthesis via Optical-Flow Diffusion [7.628962651478939]
トレーニングデータセットからビデオ拡散モデルを用いて細胞の映像を合成する。
モデルが持つ強みと一貫した欠点を分析し、ビデオ生成の改善を可能な限り高品質に導く。
論文 参考訳(メタデータ) (2022-12-06T21:40:36Z) - Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell
Microscopy [23.720106678247888]
生体細胞の時間分解蛍光顕微鏡像をシミュレートする手法としてMulti-StyleGANを提案する。
この新規な生成逆ネットワークは連続した時間ステップのマルチドメイン配列を合成する。
このシミュレーションは、細胞の形態、成長、物理的相互作用、および蛍光レポータータンパク質の強度など、基礎となる生理的要因と時間的依存を捉えている。
論文 参考訳(メタデータ) (2021-06-15T16:51:16Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - CellCycleGAN: Spatiotemporal Microscopy Image Synthesis of Cell
Populations using Statistical Shape Models and Conditional GANs [0.07117593004982078]
蛍光標識細胞核の合成2D+t画像データを生成する新しい方法を開発した。
GANコンディショニングの効果を示し、セルセグメンテーションやトラッキングアプローチの訓練に容易に使用できる合成画像のセットを作成する。
論文 参考訳(メタデータ) (2020-10-22T20:02:41Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。