論文の概要: CellCycleGAN: Spatiotemporal Microscopy Image Synthesis of Cell
Populations using Statistical Shape Models and Conditional GANs
- arxiv url: http://arxiv.org/abs/2010.12011v2
- Date: Tue, 26 Jan 2021 19:10:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 06:23:42.494414
- Title: CellCycleGAN: Spatiotemporal Microscopy Image Synthesis of Cell
Populations using Statistical Shape Models and Conditional GANs
- Title(参考訳): CellCycleGAN: 統計的形状モデルと条件GANを用いた細胞集団の時空間顕微鏡画像合成
- Authors: Dennis B\"ahr, Dennis Eschweiler, Anuk Bhattacharyya, Daniel
Moreno-Andr\'es, Wolfram Antonin and Johannes Stegmaier
- Abstract要約: 蛍光標識細胞核の合成2D+t画像データを生成する新しい方法を開発した。
GANコンディショニングの効果を示し、セルセグメンテーションやトラッキングアプローチの訓練に容易に使用できる合成画像のセットを作成する。
- 参考スコア(独自算出の注目度): 0.07117593004982078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic analysis of spatio-temporal microscopy images is inevitable for
state-of-the-art research in the life sciences. Recent developments in deep
learning provide powerful tools for automatic analyses of such image data, but
heavily depend on the amount and quality of provided training data to perform
well. To this end, we developed a new method for realistic generation of
synthetic 2D+t microscopy image data of fluorescently labeled cellular nuclei.
The method combines spatiotemporal statistical shape models of different cell
cycle stages with a conditional GAN to generate time series of cell populations
and provides instance-level control of cell cycle stage and the fluorescence
intensity of generated cells. We show the effect of the GAN conditioning and
create a set of synthetic images that can be readily used for training and
benchmarking of cell segmentation and tracking approaches.
- Abstract(参考訳): 時空間顕微鏡画像の自動解析は生命科学の最先端の研究には不可欠である。
近年の深層学習は,このような画像データを自動的に解析する強力なツールを提供しているが,得られたトレーニングデータの量や品質に大きく依存している。
そこで我々は,蛍光標識細胞核の合成2D+t顕微鏡画像データの現実的生成法を開発した。
異なる細胞周期段階の時空間的統計的形状モデルと条件付きganとを組み合わせることにより、細胞集団の時系列を発生させ、発生した細胞の細胞周期段階および蛍光強度をインスタンスレベルで制御する。
本稿では,GANコンディショニングの効果を示し,セルセグメンテーションとトラッキングアプローチのトレーニングやベンチマークに容易に使用できる合成画像のセットを作成する。
関連論文リスト
- Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - Nondestructive, quantitative viability analysis of 3D tissue cultures
using machine learning image segmentation [0.0]
本稿では,3次元培養における細胞生存率の定量化のための画像処理アルゴリズムについて述べる。
提案アルゴリズムは,1対の人的専門家に対して,数日にわたる全体像と培養マトリクスの合成において,同様の性能を示すことを示す。
論文 参考訳(メタデータ) (2023-11-15T20:28:31Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
我々は,顕微鏡画像のラベル付けを行うセル分類パイプラインを開発した。
次に、分類ラベルに基づいて分類モデルを訓練する。
2種類のセグメンテーションモデルを、丸みを帯びた形状と不規則な形状のセグメンテーションセルに展開する。
論文 参考訳(メタデータ) (2023-10-22T08:11:08Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
提案手法の精度は98%に向上し,多くの細胞に対して5dB以上の信号が増強された。
モデルは、数回の学習イテレーションで新しいタイプのサンプルを学ぶために適応し、新しく導入されたサンプルをうまく分類することができる。
論文 参考訳(メタデータ) (2022-03-02T07:09:29Z) - Search for temporal cell segmentation robustness in phase-contrast
microscopy videos [31.92922565397439]
本研究では,3次元コラーゲンマトリックスに埋め込まれた癌細胞を分画する深層学習ワークフローを提案する。
また, 癌細胞形態を研究するための幾何学的特徴付け手法を提案する。
2Dセルのセグメンテーションと追跡のための新しいアノテーション付きデータセットと、実験を再現したり、新しい画像処理問題に適応するためのオープンソース実装を導入する。
論文 参考訳(メタデータ) (2021-12-16T12:03:28Z) - Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell
Microscopy [23.720106678247888]
生体細胞の時間分解蛍光顕微鏡像をシミュレートする手法としてMulti-StyleGANを提案する。
この新規な生成逆ネットワークは連続した時間ステップのマルチドメイン配列を合成する。
このシミュレーションは、細胞の形態、成長、物理的相互作用、および蛍光レポータータンパク質の強度など、基礎となる生理的要因と時間的依存を捉えている。
論文 参考訳(メタデータ) (2021-06-15T16:51:16Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。