Stabilizing quantum simulations of lattice gauge theories by dissipation
- URL: http://arxiv.org/abs/2404.16454v2
- Date: Tue, 2 Jul 2024 14:22:58 GMT
- Title: Stabilizing quantum simulations of lattice gauge theories by dissipation
- Authors: Tobias Schmale, Hendrik Weimer,
- Abstract summary: lattice gauge theories on noisy quantum hardware suffer from violations of the gauge symmetry due to coherent and incoherent errors.
We investigate an active correction scheme that relies on detecting gauge violations locally and subsequently correcting them by dissipatively driving the system back into the physical gauge sector.
We show that the correction scheme not only ensures the protection of the gauge symmetry, but it also leads to a longer validity of the simulation results even within the gauge-invariant sector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations of lattice gauge theories on noisy quantum hardware inherently suffer from violations of the gauge symmetry due to coherent and incoherent errors of the underlying physical system that implements the simulation. These gauge violations cause the simulations to become unphysical requiring the result of the simulation to be discarded. We investigate an active correction scheme that relies on detecting gauge violations locally and subsequently correcting them by dissipatively driving the system back into the physical gauge sector. We show that the correction scheme not only ensures the protection of the gauge symmetry, but it also leads to a longer validity of the simulation results even within the gauge-invariant sector. Finally, we discuss further applications of the scheme such as preparation of the many-body ground state of the simulated system.
Related papers
- Symmetry-protection Zeno phase transition in monitored lattice gauge theories [0.0]
We show the existence of a sharp transition, triggered by the measurement rate, between a protected gauge-theory regime and an irregular regime.
Our results shed light on the dissipative criticality of strongly-interacting, highly-constrained quantum systems.
arXiv Detail & Related papers (2024-05-28T18:18:06Z) - Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
Recent work has demonstrated that model misspecification can harm simulation-based inference's reliability.
This work introduces robust posterior estimation (ROPE), a framework that overcomes model misspecification with a small real-world calibration set of ground truth parameter measurements.
arXiv Detail & Related papers (2024-05-14T16:04:39Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Digital Quantum Simulation of the Schwinger Model and Symmetry
Protection with Trapped Ions [0.5277756703318045]
We simulate the dynamics of a lattice gauge theory in 1+1 dimensions using a trapped-ion system with up to six qubits.
We demonstrate non-perturbative effects such as pair creation for times much longer than previously accessible.
This work demonstrates the integrated theoretical, algorithmic, and experimental approach that is essential for efficient simulation of lattice gauge theories.
arXiv Detail & Related papers (2021-12-28T19:00:01Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Suppressing nonperturbative gauge errors in the thermodynamic limit
using local pseudogenerators [0.0]
A gauge-protection scheme has been proposed that is based on the concept of a textitlocal pseudogenerator.
We show the efficacy of this scheme for nonperturbative errors in analog quantum simulators up to all accessible evolution times in the thermodynamic limit.
Our results indicate the presence of an emergent gauge symmetry in an adjusted gauge theory even in the thermodynamic limit.
arXiv Detail & Related papers (2021-10-13T18:00:01Z) - Faster Digital Quantum Simulation by Symmetry Protection [0.6554326244334866]
We show that by introducing quantum gates implementing unitary transformations one can induce destructive interference between the errors from different steps of the simulation.
In particular, when the symmetry transformations are chosen as powers of a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno subspaces.
We apply the symmetry protection technique to the simulations of the XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory.
arXiv Detail & Related papers (2020-06-29T18:00:00Z) - Suppressing Coherent Gauge Drift in Quantum Simulations [0.0]
For gauge theories, a large class of errors violate gauge symmetry, and thus may result in unphysical processes occurring in the simulation.
We present a method, applicable to non-Abelian gauge theories, for suppressing coherent gauge drift errors through the repeated application of pseudorandom gauge transformation.
arXiv Detail & Related papers (2020-05-26T13:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.