Digital Quantum Simulation of the Schwinger Model and Symmetry
Protection with Trapped Ions
- URL: http://arxiv.org/abs/2112.14262v2
- Date: Tue, 12 Apr 2022 16:44:24 GMT
- Title: Digital Quantum Simulation of the Schwinger Model and Symmetry
Protection with Trapped Ions
- Authors: Nhung H. Nguyen, Minh C. Tran, Yingyue Zhu, Alaina M. Green, C. Huerta
Alderete, Zohreh Davoudi, Norbert M. Linke
- Abstract summary: We simulate the dynamics of a lattice gauge theory in 1+1 dimensions using a trapped-ion system with up to six qubits.
We demonstrate non-perturbative effects such as pair creation for times much longer than previously accessible.
This work demonstrates the integrated theoretical, algorithmic, and experimental approach that is essential for efficient simulation of lattice gauge theories.
- Score: 0.5277756703318045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tracking the dynamics of physical systems in real time is a prime application
of digital quantum computers. Using a trapped-ion system with up to six qubits,
we simulate the real-time dynamics of a lattice gauge theory in 1+1 dimensions,
i.e., the lattice Schwinger model, and demonstrate non-perturbative effects
such as pair creation for times much longer than previously accessible. We
study the gate requirement of two formulations of the model using the
Suzuki-Trotter product formula, as well as the trade-off between errors from
the ordering of the Hamiltonian terms, the Trotter step size, and experimental
imperfections. To mitigate experimental errors, a recent symmetry-protection
protocol for suppressing coherent errors and a symmetry-inspired post-selection
scheme are applied. This work demonstrates the integrated theoretical,
algorithmic, and experimental approach that is essential for efficient
simulation of lattice gauge theories and other complex physical systems.
Related papers
- Symmetry-protection Zeno phase transition in monitored lattice gauge theories [0.0]
We show the existence of a sharp transition, triggered by the measurement rate, between a protected gauge-theory regime and an irregular regime.
Our results shed light on the dissipative criticality of strongly-interacting, highly-constrained quantum systems.
arXiv Detail & Related papers (2024-05-28T18:18:06Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Quantum simulation costs for Suzuki-Trotter decomposition of quantum
many-body lattice models [0.0]
We develop a formalism to compute bounds on the number of Trotter steps needed to accurately simulate the time evolution of fermionic lattice models.
We find that, while a naive comparison of the Trotter depth first seems to favor the Hubbard model, careful consideration of the model parameters leads to a substantial advantage in favor of the t-J model.
arXiv Detail & Related papers (2023-02-09T15:32:43Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories [3.4075669047370125]
We show how a tunable topological $theta$-term can be added to a prototype theory with gauge symmetry.
The model can be realized experimentally in a single-species Bose--Hubbard model in an optical superlattice with three different spatial periods.
This work opens the door towards studying the rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.
arXiv Detail & Related papers (2022-04-13T18:00:01Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Cold Atom Quantum Simulator for String and Hadron Dynamics in
Non-Abelian Lattice Gauge Theory [0.0]
Scheme calls for the realization of a two-state ultracold fermionic system in a 1-dimensional bipartite lattice.
Being based on novel loop string hadron formalism of SU(2) lattice gauge theory, this simulation technique is completely SU(2) invariant.
arXiv Detail & Related papers (2020-09-29T12:39:14Z) - Faster Digital Quantum Simulation by Symmetry Protection [0.6554326244334866]
We show that by introducing quantum gates implementing unitary transformations one can induce destructive interference between the errors from different steps of the simulation.
In particular, when the symmetry transformations are chosen as powers of a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno subspaces.
We apply the symmetry protection technique to the simulations of the XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory.
arXiv Detail & Related papers (2020-06-29T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.