COBRA -- COnfidence score Based on shape Regression Analysis for method-independent quality assessment of object pose estimation from single images
- URL: http://arxiv.org/abs/2404.16471v4
- Date: Sat, 21 Sep 2024 17:10:02 GMT
- Title: COBRA -- COnfidence score Based on shape Regression Analysis for method-independent quality assessment of object pose estimation from single images
- Authors: Panagiotis Sapoutzoglou, George Giapitzakis, George Terzakis, Maria Pateraki,
- Abstract summary: We present a generic algorithm for scoring pose estimation methods that rely on single image semantic analysis.
The algorithm employs a lightweight putative shape representation using a combination of multiple Gaussian Processes.
Our confidence measure comprises the average mixture probability of pixel back-projections onto the shape template.
- Score: 1.6249398255272316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a generic algorithm for scoring pose estimation methods that rely on single image semantic analysis. The algorithm employs a lightweight putative shape representation using a combination of multiple Gaussian Processes. Each Gaussian Process (GP) yields distance normal distributions from multiple reference points in the object's coordinate system to its surface, thus providing a geometric evaluation framework for scoring predicted poses. Our confidence measure comprises the average mixture probability of pixel back-projections onto the shape template. In the reported experiments, we compare the accuracy of our GP based representation of objects versus the actual geometric models and demonstrate the ability of our method to capture the influence of outliers as opposed to the corresponding intrinsic measures that ship with the segmentation and pose estimation methods.
Related papers
- A Stochastic-Geometrical Framework for Object Pose Estimation based on Mixture Models Avoiding the Correspondence Problem [0.0]
This paper presents a novel-geometrical modeling framework for object pose estimation based on observing multiple feature points.
Probabilistic modeling utilizing mixture models shows the potential for accurate and robust pose estimations.
arXiv Detail & Related papers (2023-11-29T21:45:33Z) - RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild [73.1276968007689]
We describe a data-driven method for inferring the camera viewpoints given multiple images of an arbitrary object.
We show that our approach outperforms state-of-the-art SfM and SLAM methods given sparse images on both seen and unseen categories.
arXiv Detail & Related papers (2022-08-11T17:59:59Z) - Delaunay Component Analysis for Evaluation of Data Representations [20.31649764319578]
We introduce Delaunay Component Analysis (DCA) - an evaluation algorithm which approximates the data manifold using a more suitable neighbourhood graph called Delaunay graph.
We experimentally validate the proposed DCA method on representations obtained from neural networks trained with contrastive objective, supervised and generative models.
arXiv Detail & Related papers (2022-02-14T16:48:23Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Direct Estimation of Appearance Models for Segmentation [0.0]
We describe a novel approach for estimating appearance models directly from an image.
Our approach is based on algebraic expressions that relate local image statistics to the appearance models of spatially coherent regions.
We present experimental results that demonstrate the proposed methods work well in practice and lead to effective image segmentation algorithms.
arXiv Detail & Related papers (2021-02-22T15:50:39Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z) - Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints [80.60538408386016]
Estimating relative camera poses from consecutive frames is a fundamental problem in visual odometry.
We propose an end-to-end trainable framework consisting of learnable modules for detection, feature extraction, matching and outlier rejection.
arXiv Detail & Related papers (2020-07-29T21:41:31Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.